International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 04 November 2014

Thijs Laarhoven, Michele Mosca, Joop van de Pol
ePrint Report ePrint Report
By applying a quantum search algorithm to various heuristic and provable sieve algorithms from the literature, we obtain improved asymptotic quantum results for solving the shortest vector problem on lattices. With quantum computers we can provably find a shortest vector in time $2^{1.799n + o(n)}$, improving upon the classical time complexities of $2^{2.465n + o(n)}$ of Pujol and Stehl\\\'{e} and the $2^{2n + o(n)}$ of Micciancio and Voulgaris, while heuristically we expect to find a shortest vector in time $2^{0.286n + o(n)}$, improving upon the classical time complexity of $2^{0.337n + o(n)}$ of Laarhoven. These quantum complexities will be an important guide for the selection of parameters for post-quantum cryptosystems based on the hardness of the shortest vector problem.

Expand

Additional news items may be found on the IACR news page.