International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 22 October 2014

Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna Pavlyk, Qiang Tang
ePrint Report ePrint Report
We initiate the study of good rate homomorphic encryption schemes.

Based on previous work on securely evaluating (binary I/O) branching programs, we propose a leveled homomorphic encryption scheme

for {\\em large-output} polynomial-size branching programs (which we call $\\mathbf{L/poly}$) that possesses near optimal-rate. The rate analysis of the new scheme is intricate: the best rate is achieved if a certain parameter $s$ is set equal to the only positive root of a degree-$m$ polynomial, where $m$ is the length of the branching program. We employ the Newton-Puiseux algorithm to find a Puiseux series for this parameter, and based on this, propose a $\\Theta (\\log m)$-time algorithm to find an integer approximation to $s$.

We also describe a rate-optimal 1-out-of-$n$ CPIR based on rate-optimal homomorphic encryption. In concrete terms, when applied to say, a movie database with $n = 2^{16}$ elements of $\\ell = 3.8 \\cdot 10^{9}$-bits, the client can privately download a movie with a communication rate of almost $0.99$, hence sacrificing only about $1\\%$ of bandwidth for privacy.

We also analyze the optimality of the rate efficiency of our scheme in a novel model that may be of independent interest. Our $1$-out-of-$n$ CPIR has rate $ 1- 1.72 \\sqrt{k / \\ell} \\cdot \\log_{2} n + O_\\ell(\\ell^{-1})$, while we show that no black-box construction surpasses $1 - \\sqrt{k / \\ell} (\\log n/ \\log \\log n) + O_\\ell(\\ell^{-1})$ in terms of rate, where $\\ell$ is the length of the database elements and $k$ the security parameter.

Expand

Additional news items may be found on the IACR news page.