International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 19 September 2014

Benjamin Smith
ePrint Report ePrint Report
We give a detailed account of the use of \\(\\mathbb{Q}\\)-curve reductions to construct elliptic curves over \\(\\mathbb{F}_{p^2}\\) with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant--Lambert--Vanstone (GLV) and Galbraith--Lin--Scott (GLS) endomorphisms.

Like GLS (which is a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves, and thus finding secure group orders when \\(p\\) is fixed for efficient implementation.

Unlike GLS, we also offer the possibility of constructing twist-secure curves.

We construct several one-parameter families of elliptic curves over \\(\\mathbb{F}_{p^2}\\) equipped with efficient endomorphisms for every \\(p > 3\\), and exhibit examples of twist-secure curves over \\(\\mathbb{F}_{p^2}\\) for the efficient Mersenne prime \\(p = 2^{127}-1\\).

Expand

Additional news items may be found on the IACR news page.