International Association for Cryptologic Research

IACR News Central

Get an update on changes of the IACR web-page here. For questions, contact newsletter (at) You can also receive updates via:

To receive your credentials via mail again, please click here.

You can also access the full news archive.

Further sources to find out about changes are CryptoDB, ePrint RSS, ePrint Web, Event calender (iCal).

00:17 [Pub][ePrint] DoubleMod and SingleMod: Simple Randomized Secret-Key Encryption with Bounded Homomorphicity, by Dhananjay S. Phatak, Qiang Tang, Alan T. Sherman, Warren D. Smith, Peter Ryan, Kostas Kalpakis

  An encryption relation $f \\subseteq {\\mathbb Z} \\times {\\mathbb Z}$ with decryption function $f^{-1}$ is {\\it ``group-homomorphic\'\'} if, for any suitable plaintexts $x_1$ and $x_2$, $\\, x_1+x_2 = f^{-1} ( f(x_1) + f(x_2) )$. It is {\\it ``ring-homomorphic\'\'} if furthermore $x_1 x_2 = f^{-1} ( f(x_1) f(x_2) )$; it is {\\it ``field-homomorphic\'\'} if furthermore $1/x_1 = f^{-1} ( f(1/x_1) )$. Such relations would support oblivious processing of encrypted data.

We propose a simple randomized encryption relation~$f$ over the integers, called\\linebreak {\\it \\mbox{DoubleMod}}, which is ``bounded ring-homomorphic\'\' or what some call \"somewhat homomorphic.\" Here, ``bounded\'\' means that the number of additions and multiplications that can be performed, while not allowing the encrypted values to go out of range, is limited~(any pre-specified bound on the operation-count can be accommodated). Let $R$ be any large integer. For any plaintext $x \\in {\\mathbb Z}_R$, DoubleMod encrypts $x$ as $f(x) = x + au + bv$, where $a$ and $b$ are randomly chosen integers in some appropriate interval, while $(u,v)$ is the secret key. Here $u>R^2$ is a large prime and the smallest prime factor of $v$ exceeds $u$. With knowledge of the key, but not of $a$ and $b$, the receiver decrypts the ciphertext by computing $f^{-1}(y) =(y \\bmod v) \\bmod u$.

DoubleMod generalizes an independent idea of van Dijk {\\it et al.} 2010. We present and refine a new CCA1 chosen-ciphertext attack that finds the secret key of both systems (ours and van Dijk {\\it et al.}\'s) in linear time in the bit length of the security parameter. Under a known-plaintext attack, breaking DoubleMod is at most as hard as solving the {\\it Approximate GCD (AGCD)} problem. The complexity of AGCD is not known.

We also introduce the \\mbox{{\\it SingleMod}} {field}-homomorphic cryptosystems. The simplest\\linebreak \\mbox{SingleMod} system based on the integers can be broken trivially. We had hoped, that if SingleMod is implemented inside non-Euclidean quadratic or higher-order fields with large discriminants, where GCD computations appear difficult, it may be feasible to achieve a desired level of security. We show, however, that a variation of our chosen-ciphertext attack works against SingleMod even in non-Euclidean fields.

20:13 [Job][New] Cryptography Engineer, CloudFlare Inc.


CloudFlare is looking for a talented cryptography engineer to join our team. We are working on a number of ambitious projects to secure the web and protect our customers from threats of all sorts. At CloudFlare we deal with cryptography at scale, and tackle projects that shape the future of the Web.

The role of cryptography engineer at CloudFlare is more that of a builder than a breaker. You will have to approach problems with creativity and flexibility and be able to identify and use the best tools for the job or build better ones from scratch. At CloudFlare, we are serious about protecting our customers and advancing the state of the art in computer security.


  • Expertise in theory and implementation of white-box cryptography

  • Experience building code obfuscation tools

  • Experience writing cryptographic libraries and APIs

  • Experience implementing production-grade cryptographic algorithms

  • Expert in C/C++/Go and performance analysis

  • Familiarity with compilers or code generation tools

    Bonus Points:

  • Contributions to the open source community

  • Experience with cryptographic hardware (TPM, HSM, etc.)

  • Healthy sense of paranoia

  • 15:28 [Event][New] TOC2014: RISC Seminar on Theory of Cryptography

      From September 18 to September 19
    Location: Amsterdam, The Netherlands
    More Information:

    15:02 [Job][New] Post-Doc, LORIA-CNRS, University of Lorraine, Nancy, France

      Provably secure e-voting

    We are looking for one postdoctoral researcher to join the ProSecure project at Loria, Nancy, in the Cassis team, for 1 or 2 years.


    One important family of protocols is e-voting. Electronic voting protocols should offer the same guarantees than more traditional voting systems. In particular, they should offer both vote privacy and verifiability : anyone should be able to check that the result corresponds to the votes. Surprisingly, even defining a crucial property such as vote privacy has not yet reached a consensus in the scientific community. Moreover, existing voting systems should still be improved in terms of verifiability, coercion-resistance, or usability. To achieve a high level of trust, these systems should be proved secure rigorously.


    One objective is to propose well-founded definitions of crucial properties in e- voting such as privacy, receipt-freeness, coercion-resistance, and verifiability and apply them on various e-voting protocols including well-known schemes such as Helios or Civitas. In particular, our team is developing a variant of Helios named Belenios. This scheme has been proved to be ballot private and fully verifiable. More security properties are yet to be proved and several enhancement of the protocol are planned. Belenios benefits from the support of an engineer that develops and maintains it.

    The post-doc researcher is expected to contribute autonomously to the development of new results for defining and proving cryptographic security properties and for designing a both practical and secure voting scheme. The postdoc researcher should have a good publication record and a strong expertise in cryptography.

    14:33 [Job][Update] Doctoral Researcher in the collaborative research center CROSSING, Technische Universität Darmstadt, Germany

      Collaborative Research Centers are institutions funded by the German Research Foundation (DFG) and are established at universities to pursue a scientifically ambitious, complex, long?term research program. The goal of the center CROSSING is to provide cryptography-based security solutions enabling trust in new and next generation computing environments. In the center researchers from different areas such as Cryptography, IT-Security, Quantum Physics, and Software Engineering will collaborate. The available doctoral positions are distributed over the aforementioned areas, and will be affiliated with the research training school of the center.

    As part of its research program CROSSING will develop an open-source software called OpenCCE which will allow users to deploy the developed solutions in a secure and easy way.

    Applicants should upload their applications on including the usual documents and indicating the applicant’s area of interest. Applications will be considered until the positions are filled.

    For more information about CROSSING and the application process please visit

    TU Darmstadt has a large interest in increasing the number of female researchers, and hence particularly encourages female candidates to apply. Applicants with a degree of disability of 50% or more will be preferred in case they are otherwise equally qualified to the other candidates. It is generally possible to work part time.

    09:17 [Pub][ePrint] Revocation in Publicly Verifiable Outsourced Computation, by James Alderman and Carlos Cid and Jason Crampton and Christian Janson

      The combination of software-as-a-service and the increasing use of mobile devices gives rise to a considerable difference in computational power between servers and clients. Thus, there is a desire for clients to outsource the evaluation of complex functions to an external server. Servers providing such a service may be rewarded per computation, and as such have an incentive to cheat by returning garbage rather than devoting resources and time to compute a valid result.

    In this work, we introduce the notion of Revocable Publicly Verifiable Computation (RPVC), where a cheating server is revoked and may not perform future computations (thus incurring a financial penalty). We introduce a Key Distribution Center (KDC) to efficiently handle the generation and distribution of the keys required to support RPVC. The KDC is an authority over entities in the system and enables revocation. We also introduce a notion of blind verification such that results are verifiable (and hence servers can be rewarded or punished) without learning the value.

    We present a rigorous definitional framework, define a number of new security models and present a construction of such a scheme built upon Key-Policy Attribute-based Encryption.

    09:17 [Pub][ePrint] The Multiple Number Field Sieve with Conjugation Method, by Cécile Pierrot

      In this short paper, we propose a variant of the Number Field Sieve to compute discrete logarithms in medium characteristic finite fields.

    We propose an algorithm that combines two recent ideas, namely the Multiple variant of the Number Field Sieve taking advantage of a large number of number fields in the sieving phase and the Conjugation Method giving a new polynomial selection for the classical Number Field Sieve. The asymptotic complexity of our improved algorithm is L_Q (1/3, (8 (9+4 \\sqrt{6})/15)^1/3), where F_Q is the target finite field and (8 (9+4 \\sqrt{6})/15)^1/3) is approximately equal to 2.156. This has to be compared with the complexity of the previous state-of-the-art algorithm for medium characteristic finite fields, the Number Field Sieve with Conjugation Method, that has a complexity of approximately L_Q(1/3, 2.201).

    09:17 [Pub][ePrint] Balanced permutations Even-Mansour ciphers, by Shoni Gilboa and Shay Gueron

      The $r$-rounds Even-Mansour block cipher uses $r$ public permutations of $\\{0, 1\\}^n$ and $r+1$ secret keys. An attack on this construction was described in \\cite{DDKS}, for $r = 2, 3$. Although this attack is only marginally better than brute force, it is based on an interesting observation (due to \\cite{NWW}): for a \"typical\" permutation $P$, the distribution of $P(x) \\oplus x$ is not uniform.

    To address this, and other potential threats that might stem from this observation in this (or other) context, we introduce the notion of a ``balanced permutation\'\' for which the distribution of $P(x) \\oplus x$ is uniform, and show how to generate families of balanced permutations from the Feistel construction.

    This allows us to define a $2n$-bit block cipher from the $2$-rounds Even-Mansour scheme. The cipher uses public balanced permutations of $\\{0, 1\\}^{2n}$, which are based on two public permutations of $\\{0, 1\\}^{n}$.

    By construction, this cipher is immune against attacks that rely on the non-uniform behavior of $P(x) \\oplus x$. We prove that this cipher is indistinguishable from a random permutation of $\\{0, 1\\}^{2n}$,

    for any adversary who has oracle access to the public permutations and to an encryption/decryption oracle, as long as the number of queries is $o (2^{n/2})$. As a practical example, we discuss the properties and the performance of a $256$-bit block cipher that is based on AES.

    09:17 [Pub][ePrint] On the Security of `An Efficient Biometric Authentication Protocol for Wireless Sensor Networks\', by Ashok Kumar Das

      In 2013, Althobaiti et al. proposed an efficient biometric-based user authentication scheme for wireless sensor networks. We analyze their scheme for the security against known attacks. Though their scheme is efficient in computation, in this paper we show that their scheme has some security pitfalls such as (1) it is not resilient against node capture attack, (2) it is insecure against impersonation attack and (3) it is insecure against man-in-the-middle attack. Finally, we give some pointers for improving their scheme so that the designed scheme needs to be secure against various known attacks.

    09:17 [Pub][ePrint] Side Channel Attacks: Vulnerability Analysis of \\texttt{PRINCE} and \\texttt{RECTANGLE} using DPA, by Ravikumar Selvam and Dillibabu Shanmugam and Suganya Annadurai

      Over a decade, cryptographers are more attentive on designing lightweight ciphers in focus to compact cryptographic devices. More often, the security of these algorithms are defined in terms of its resistance to mathematical cryptanalysis methods. Nevertheless, designers are well aware of implementation attacks and concentrating on new design strategies to improve the defence quality against implementation attack. \\texttt{PRINCE}~\\cite{Julia2012} and \\texttt{RECTANGLE}~\\cite{cryptoeprint:2014:084} lightweight block ciphers are designed using new design strategies for efficiency and security. In this paper we analyse the security of \\texttt{PRINCE} and \\texttt{RECTANGLE} against a type of implementation attack called Differential Power Analysis (DPA) attack. Our attack reduces key search space from $2^{128}$ to $33008$ for \\texttt{PRINCE} and $2^{80}$ to $288$ for \\texttt{RECTANGLE}. To the best of our knowledge, this is the first DPA attack on \\texttt{PRINCE} and \\texttt{RECTANGLE}.

    09:17 [Pub][ePrint] Graded Multilinear Maps from Lattices, by Craig Gentry and Sergey Gorbunov and Shai Halevi

      Graded multilinear encodings have found extensive applications in cryptography ranging from

    non-interactive key exchange protocols, to broadcast and attribute-based encryption, and even to software obfuscation.

    Despite seemingly unlimited applicability, essentially only two candidate constructions are known (GGH and CLT). In this work, we describe a new graded multilinear encoding scheme from lattices.

    Our construction encodes Learning With Errors (LWE) samples

    in short square matrices of higher dimensions. Addition and multiplication of the encodings corresponds naturally to addition and multiplication

    of the LWE secrets. Comparisons of any two encodings

    can be performed publicly at any level.

    The security of our scheme relies on a hardness of a natural problem which can be thought of as analogous to standard LWE problem.