International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 23 June 2014

Adeline Langlois, Damien Stehle, Ron Steinfeld
ePrint Report ePrint Report
The GGH Graded Encoding Scheme, based on ideal lattices, is the first plausible approximation to a cryptographic multilinear map. Unfortunately, using the security analysis in the original paper, the scheme requires very large parameters to provide security for its underlying encoding re-randomization process. Our main contributions are to formalize, simplify and improve the efficiency and the security analysis of the re-randomization process in the GGH construction. This results in a new construction that we call GGHLite. In particular, we first lower the size of a standard deviation parameter of the re-randomization process of the original scheme from exponential to polynomial in the security parameter. This first improvement is obtained via a finer security analysis of the

drowning step of re-randomization, in which we apply the

Rényi divergence instead of the conventional statistical distance as a measure of distance between distributions. Our second improvement is to reduce the number of randomizers needed from $\\Omega(n \\log n)$ to $2$, where $n$ is the dimension of the underlying ideal lattices. These two contributions allow us to decrease the bit size of the public parameters from $O(\\lambda^5 \\log \\lambda)$ for the

GGH scheme to $O(\\lambda \\log^2 \\lambda)$ in GGHLite, with respect to the security parameter $\\lambda$ (for a constant multilinearity parameter $\\kappa$).

Expand

Additional news items may be found on the IACR news page.