International Association for Cryptologic Research

IACR News Central

Get an update on changes of the IACR web-page here. For questions, contact newsletter (at) You can also receive updates via:

To receive your credentials via mail again, please click here.

You can also access the full news archive.

Further sources to find out about changes are CryptoDB, ePrint RSS, ePrint Web, Event calender (iCal).

18:26 [PhD][New] San Ling

  Name: San Ling

18:26 [PhD][Update] Lei Wei: Analysis of Iterated Block Ciphers

  Name: Lei Wei
Topic: Analysis of Iterated Block Ciphers
Category:secret-key cryptography


A block cipher is the foundation stone of symmetric-key cryptography. Due to its simplicity and high performance, it is often the workhorse for providing confidentiality - one of the primary goals of cryptography. Hence the security of a block cipher is of fundamental importance in the entire infrastructure of cryptography, and therefore block ciphers shall be analyzed and evaluated. This practice is called block cipher cryptanalysis. In this thesis, we analyze a few block ciphers in the classic meet-in-the-middle model and in the recently proposed multidimensional linear cryptanalysis model.

Besides for encryption, block ciphers are also one of the most versatile building blocks used for constructing many other cryptographic primitives. One such example is the compression function of cryptographic hash functions, and there is a close relation between the security analysis of block ciphers and hash functions. In addition, many dedicated cryptographic hash functions are designed with ideas used in block ciphers. Therefore, it is natural that many block cipher cryptanalysis techniques can be transferred to hash function analysis. In this thesis, we analyze hash functions with differential cryptanalysis and techniques inspired by differential cryptanalysis. On the other hand, recent advances in hash function cryptanalysis contribute to the analysis of block ciphers. We give one such example too.

In total we have four main topics on (or closely related to) the security analysis of block ciphers.

  1. We study the multidimensional extension to Matsui’s Algorithm 1 and find improvements that lower the attack’s costs. The new attacks are applied to 9-round and 4-round Serpent, with interesting observations on these improvements and the framework.
  2. We study meet-in-the-middle attacks and their application to the hardware-oriented block cipher Ktantan family and reduced DES. Several recent hash function analysis techniques are used f[...]

18:26 [PhD][New] Elisa Gorla

  Name: Elisa Gorla

18:25 [PhD][New]


18:25 [PhD][New]


18:17 [Pub][ePrint]


18:17 [Pub][ePrint]


18:17 [Pub][ePrint] Cryptographic Schemes Based on the ASASA Structure: Black-box, White-box, and Public-key, by Alex Biryukov and Charles Bouillaguet and Dmitry Khovratovich

  In this paper we pick up an old challenge to design public key or white-box constructions from symmetric cipher components. We design several encryption schemes based on the ASASA structure

ranging from fast and generic symmetric ciphers to compact public key and white-box constructions based on generic affine transformations combined with specially designed low degree non-linear layers. While explaining our design process we show several instructive attacks on the

weaker variants of our schemes.

18:17 [Pub][ePrint]


18:17 [Pub][ePrint]


18:17 [Pub][ePrint] Relaxed Two-to-one Recoding Schemes, by Omkant Pandey and Kim Ramchen and Brent Waters

  A two-to-one recoding (TOR) scheme is a new cryptographic primitive, proposed in the recent work of Gorbunov, Vaikuntanathan, and Wee (GVW), as a means to construct attribute-based encryption

(ABE) schemes for all boolean circuits. GVW show that TOR schemes can be constructed assuming the hardness of the learning-with-errors (LWE) problem.

We propose a slightly weaker variant of TOR schemes called correlation-relaxed two-to-one recoding (CR-TOR). Unlike the TOR schemes, our weaker variant does not require an encoding function to

be pseudorandom on correlated inputs. We instead replace it with an indistinguishability property that states a ciphertext is hard to decrypt without access to a certain encoding. The primary benefit of this relaxation is that it allows the construction of ABE for circuits using the TOR paradigm from a broader class of cryptographic assumptions.

We show how to construct a CR-TOR scheme from the noisy cryptographic multilinear maps of Garg, Gentry, and Halevi as well as those of Coron, Lepoint, and Tibouchi. Our framework leads to an instantiation of ABE for circuits that is conceptually different from the existing constructions.