International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 05 June 2014

Ulrich Rührmair
ePrint Report ePrint Report
In this paper, we discuss the question how physical

statements can be proven remotely over digital communication

channels, but without using classical secret keys, and without

assuming tamper-resistant and trusted measurement hardware in the location of the prover. Examples for the considered physical statements are: (i) \"the temperature of a certain object is X

°C\", (ii) \"two certain objects are positioned at distance X\", or (iii) \"a certain object has been irreversibly altered or destroyed\". In lack of an established name, we would like to call the corresponding security protocols \"virtual proofs of reality\" (VPs).

While a host of variants seems conceivable, this paper focuses

on VPs in which the verifier has handed over one or more

specific physical objects O_i to the prover at some point prior

to the VP. These \"witness objects\" assist the prover during the

proof, but shall not contain classical digital keys nor be assumed

tamper-resistant in the classical sense. The prover is allowed to

open, inspect and alter these objects in our adversarial model,

only being limited by current technology, while he shall still

be unable to prove false claims to the verifier.

In order to illustrate our concept, we give example

protocols built on temperature sensitive integrated circuits, disordered optical scattering media, and quantum systems. These

protocols prove the temperature, destruction/modification, or

relative position of witness objects in the prover\'s location. Full

experimental realizations of these schemes are beyond the scope

of this paper. But the protocols utilize established technologies

from the areas of physical unclonable functions and quantum

cryptography, and hence appear plausible also without such

proof. Finally, we also discuss potential advancements of our

method in theory, for example \"public virtual proofs\" that

function without exchanging witness objects Oi between the

verifier and the prover.

Our work touches upon and partly extends several established cryptographic and security concepts, including physical unclonable functions, quantum cryptography, and interactive proof systems.

Expand

Additional news items may be found on the IACR news page.