International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 27 May 2014

Erich Wenger, Paul Wolfger
ePrint Report ePrint Report
Using FPGAs to compute the discrete logarithms of elliptic curves is a well known method. However, until now only CPU clusters succeeded in computing new elliptic curve discrete logarithm records. This work presents a high-speed FPGA implementation that was used to compute the discrete logarithm of a 113-bit Koblitz curve. The core of the design is a fully unrolled, highly pipelined, self-sufficient Pollard\'s rho iteration function. An 18-core Virtex-6 FPGA cluster computed the discrete logarithm of a 113-bit Koblitz curve in extrapolated 24 days. Until now, no attack on such a large Koblitz curve succeeded using so minimal resources or in such a short time frame.

Expand

Additional news items may be found on the IACR news page.