International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 17 December 2013

Jian Ye, Chenglian Liu
ePrint Report ePrint Report
The famous Goldbach\'s conjecture and Polignac\'s conjecture are two of all unsolved problems in the field of number theory today. As well known, the Goldbach\'s conjecture and the Polignac\'s conjecture are equivalent. Most of the literatures does not introduce about internal equivalence in Polignac\'s conjecture. In this paper, we would like to discuss the internal equivalence to the Polignac\'s conjecture, say $T_{2k}(x)$ and $T(x)$ are equivalent. Since $T_{2k}\\sim T(x)\\sim 2c\\cdot \\frac{x}{(\\ln x)^{2}}$, we rewrite and re-express to $T(x)\\sim T_{4}(x)\\sim T_{8}(x)\\sim T_{16}(x)\\sim T_{32}(x)\\sim T_{2^{n}}(x)\\sim 2c\\cdot \\frac{x}{(\\ln x)^{2}}$. And then connected with the Goldbach\'s conjecture. Finally, we will point out the important prime number symmetry role of play in these two conjectures.

Expand

Additional news items may be found on the IACR news page.