International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 24 September 2013

Xiaofei Guo, Ramesh Karri
ePrint Report ePrint Report
Naturally occurring and maliciously injected faults reduce the reliability of cryptographic hardware and may leak confidential information. We develop a concurrent error detection (CED) technique called Recomputing with Permuted Operands (REPO). We show that it is cost effective in Advanced Encryption Standard (AES) and a secure hash

function Grøstl. We provide experimental results and formal proofs to show that REPO detects all single-bit and single-byte faults. Experimental results show that REPO achieves close to 100% fault coverage for multiple byte faults. The hardware and throughput overheads are compared with those of previously reported CED techinques on two Xilinx Virtex FPGAs. The hardware overhead is 12.4-27.3%, and the throughput is 1.2-23Gbps, depending on the AES architecture, FPGA family, and detection latency. The performance overhead ranges from 10% to 100% depending on the security

level. Moreover, the proposed technique can be integrated into various block cipher modes of operation. We also discuss the limitation of REPO and its potential vulnerabilities.

Expand

Additional news items may be found on the IACR news page.