International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 27 May 2013

Shivam Bhasin, Claude Carlet, Sylvain Guilley
ePrint Report ePrint Report
In hardware, substitution boxes for block ciphers can be saved already masked in the implementation.

The masks must be chosen under two constraints:

their number is determined by the implementation area and their properties should allow to deny high-order zero-offset attacks of highest degree.

First, we show that this problem translates into a known trade-off in Boolean functions, namely

finding correlation-immune functions of lowest weight.

For instance, this allows to prove that a byte-oriented block cipher such as AES can be protected with only $16$ mask values against zero-offset correlation power attacks of orders $1$, $2$ and $3$.

Second, we study $d$th-order correlation-immune Boolean functions $\\F_2^n \\to \\F_2$ of low-weight

and exhibit such functions of minimal weight found by a satisfiability modulo theory tool.

In particular, we give the minimal weight for $n \\leq 10$.

Some of these results were not known previously, such as the minimal weight for

$(n=9, d=4)$ and

$(n=10, d \\in \\{4,5,6\\})$.

These results set new bounds for the minimal number of lines of binary orthogonal arrays.

In particular, we point out that the minimal weight $w_{n,d}$ of a $d$th-order correlation-immune function might not be increasing with the number of variables $n$.

Expand

Additional news items may be found on the IACR news page.