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Abstract. We introduce software for the generation of instances of the LWE and Ring-LWE
problems, allowing both the generation of generic instances and also particular instances
closely-related to those arising from cryptomania proposals in the literature. Our goal is to
allow researchers to attack different instances in order to assess the practical hardness of
LWE and Ring-LWE. This will in turn give insight to the practical security of cryptographic
systems based on both problems.
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1 Introduction

The LWE and Ring-LWE problems (reproduced in Definitions 1 and 2) have received widespread
attention from the cryptographic community in recent years. Promising encryption systems have
been proposed with LWE and Ring-LWE as security background. So far, algorithms to solve both
problems have been rarely tested. For this purpose this work describes a public generator system
for LWE and Ring-LWE instances.

Definition 1 (LWE). Let n ≥ 1 be a positive integer, q be an odd prime, χ be a probability

distribution on Zq and s be a secret vector in Znq . We denote by L
(n)
s,χ the probability distribution

on Znq ×Zq obtained by choosing a ∈ Znq at random, choosing e ∈ Zq according to χ, and returning
(a, c) = (a, 〈a, s〉+ e) ∈ Znq × Zq.
Decision-LWE is the problem of distinguishing L

(n)
s,χ from the uniform distribution U(Znq × Zq) on

Znq × Zq.
Search-LWE is the problem of finding s ∈ Znq given pairs Znq × Zq sampled according to L

(n)
s,χ.

Under certain conditions on the modulus and noise distribution χ (which we do not discuss here),
solving certain (assumed hard) worst-case lattice problems can be reduced to solving (average-
case) LWE. In recent work [BLP+13], the authors go beyond the quantum reduction of Regev
[Reg05], to give a classical reduction, further bolstering confidence in the hardness of LWE.

Definition 2 (Ring-LWE (informal)). Let n ≥ 1 be a power of 2 and let q ≡ 1 mod 2n,
q ∈ poly(n) be a prime modulus. Let f(x) = xn + 1 ∈ Z[x], implying that f(x) is irreducible
over Q. Set R = Z[x]/〈f(x)〉, the ring of integer polynomials modulo f(x) and set Rq = R/〈q〉.
Then the ring-LWE problem can (informally) be defined as: choosing s ∈ Rq to be a uniformly
random ring element and defining an error distribution χ on R such that the ‘weight’ of χ (in
general terms) is concentrated on ‘small’ elements of R. Similarly to decision-LWE, the (decision)
Ring-LWE problem is to distinguish between pairs (a, a ∗ s + e) (where a ← U(Rq), e ← χ and ∗
denotes multiplication in Rq) and pairs (a, c)← U(Rq ×Rq).



It should be noted that, despite the significant extra structure (and thus enhanced efficiency in
constructions based on Ring-LWE) present in instances of the Ring-LWE problem, no algorithms
are currently known which can exploit this structure in a significant manner, thus the present
algorithms for the LWE and Ring-LWE problems are essentially the same.

The popularity of these problems as a base for cryptographic constructions is partly due to their
remarkable flexibility and partly due to their strong asymptotic hardness guarantees. However, the
concrete cost of solving specific instances of these problems has not received widespread attention.
Even when reports on the concrete hardness of particular instances are available, these are usually
not easily comparable with other results, as no unified set of benchmarks for algorithms solving
(Ring-)LWE are available.

This work aims to provide such benchmark instances and to facilitate research on the concrete
hardness of LWE instances by making easy-to-use instance generators for the LWE and Ring-
LWE problem available. This includes both generic classes for these problems (LWE and RingLWE)
as well as specific generators for various proposals from the literature [Reg09,LP11,CGW13]. Our
generators are written for and submitted for inclusion in the Sage mathematics software [S+13].
We start with an example where we construct an LWE oracle following [Reg09]:

sage: from lwe import Regev
sage: Regev(n=128) # Regev’s parameters with security parameter n=128
LWE(128, 16411, DiscreteGaussianSamplerRejection (11.809841 , 16411, 4), ’uniform ’, None)

Our second example demonstrates how to use the oracle and what the output looks like:

sage: from lwe import Regev
sage: lwe = Regev(n=10) # Regev ’s parameters with security parameter n=10
sage: lwe()
((5, 40, 37, 23, 62, 29, 29, 75, 81, 88), 51)

The output shows the tuple (a, 〈a, s〉+ e).

2 The Generator

The LWE and RingLWE constructors accept as parameter a noise distribution D which, when invoked,
returns an element in Z. We provide instances of such noise distribution oracles called “samplers”
in our work. Somewhat contrary to intuition, sampling faithfully from Gaussian and (in particular)
discretised Gaussian distributions is not a straight-forward task. The approach we employ is simple
rejection sampling, in which elements are drawn uniformly at random from the support of a
distribution, then rejected with probability inversely proportional to the probability density at
the chosen point.

DiscreteGaussianSamplerRejection samples element in Z according to a a discrete Gaussian distri-
bution centred at zero with standard deviation σ. We stress that this sampler is parameterised by
the target standard deviation instead of the parameter s = (σ ·

√
2π) often found in the literature.

We give an example below:

sage: from lwe import DiscreteGaussianSamplerRejection
sage: D = DiscreteGaussianSamplerRejection (3.0)
sage: variance ([D() for _ in range (2000) ]).sqrt().n()
3.01445160173946

Note that rejection sampling is currently the default strategy for sampling from a discrete Gaussian
distribution. Hence, the default Gaussian sampler DiscreteGaussianSampler points to Discrete-

GaussianSamplerRejection.
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Some recent works (e.g., [GLP12,MP13]) raise the possibility of employing the uniform distribution
over a small subset of Z in place of a discrete Gaussian, thus we include UniformSampler which
samples uniformly between a lower and an upper bound as illustrated in the following example:

sage: from lwe import UniformSampler
sage: D = UniformSampler (-2,2)
sage: L = [D() for _ in range (2000)]
sage: [L.count(i) for i in (-2,-1,0,1,2)]
[399, 409, 380, 395, 417]

For each of these classes there also exist analogous polynomial variants for Ring-LWE. Here, a
polynomial in Rq is generated by sampling its coefficients independently from Gaussian or uniform
distribution.

The basic LWE class characterises LWE instances by the dimension n, a modulus q and a noise
distribution D defined over Z. We can construct LWE instances as follows:

sage: from lwe import DiscreteGaussianSampler , LWE
sage: D = DiscreteGaussianSampler (3)
sage: LDist = LWE(n=20, q=401, D=D)
sage: LDist
LWE(20, 401, DiscreteGaussianSamplerRejection (3.000000 , 53, 4), ’uniform ’, None)
sage: LDist ()
((19, 118, 249, 127, 347, 269, 232, 383, 16, 265, 247, 133, 102, 74, ... , 272), 63)

The LWE class also accepts a parameter secret dist which may be either “uniform” or “noise”. In
the later case, the secret is sampled from the same distribution as the noise, namely D. It also
accepts a parameter m to limit the number samples returned, as is the case in some cryptosystem
proposals, for instance [LP11]. After this limit is reached an IndexError is raised whenever another
sample is requested. We highlight this using RingLWE:

sage: from lwe import RingLWE , DiscreteGaussianPolynomialSampler
sage: D = DiscreteGaussianPolynomialSampler(euler_phi (8), stddev =3)
sage: rlwe = RingLWE(N=8, q=next_prime (400), D=D, m=5); rlwe
RingLWE(8, 401, DiscreteGaussianPolynomialSamplerRejection (4, 3.000000 , 53, 4), x^4 + 1, ’

uniform ’, 5)
sage: rlwe() # note that samples are tuples of vectors over IntegerModRing(q)
((314, 333, 270, 367), (89, 276, 152, 388))
sage: _ = [ rlwe() for _ in range (4) ]
sage: rlwe()
...
IndexError: Number of available samples exhausted.

2.1 Instances from the Literature

We also provide high-level interfaces to generate LWE instances from the literature. In particular,
the following instance generators are supported.

1. Regev instantiates an LWE oracle given a security parameter n following [Reg09].

sage: from lwe import Regev
sage: Regev (128)
LWE(128, 16411, DiscreteGaussianSamplerRejection (11.809841 , 16411, 4), ’uniform ’, None)

2. LindnerPeikert instantiates an LWE oracle given a security parameter n following [LP11].

sage: from lwe import LindnerPeikert
sage: LindnerPeikert (128)
LWE(128, 2053, DiscreteGaussianSamplerRejection (2.705800 , 53, 4), ’noise’, None)

3. UniformNoiseLWE instantiates an LWE oracle given a security parameter n following [CGW13].

sage: from lwe import UniformNoiseLWE
sage: UniformNoiseLWE (128)
LWE(128, 389164331 , UniformSampler (0, 486), ’noise’, 177)
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4. RingLindnerPeikert instantiates a Ring-LWE oracle given a security parameter n following a
generalisation of [LP11].

sage: from lwe import RingLindnerPeikert
sage: RingLindnerPeikert (128)
RingLWE (128, 2053, DiscreteGaussianPolynomialSamplerRejection (64, 3.050908 , 53, 4), x^64 +

1, ’noise’, None)

2.2 Utility Functions

The function samples provides easy, one-line access to all generators. It accepts a number m
requested samples, a security parameter n, an LWE instance generator, a seed for the random
number generator and a special parameter “balanced”: by default, elements in Zq are represented
as integers in x ∈ [0, q − 1] by Sage. If, instead, we wish to use the balanced representation
x ∈ [−bq/2c, bq/2c], the parameter “balanced” can be used to apply the balanced representa-
tion to scalars and vectors in and over Zq (with output given as integers or Z-module elements,
respectively).

sage: S = samples (20, 10, ’RingLindnerPeikert ’, seed =1337); S
[((706 , 21, 602, 420), (197, 136, 639, 177)),
...
((709, 855, 682, 57), (504, 166, 894, 963))]

sage: len(S)
20

With balanced-representation output:

sage: samples (20, 10, ’RingLindnerPeikert ’, seed =1337, balanced=True)
[((-325, 21, -429, 420), (197, 136, -392, 177)),
...
((-322, -176, -349, 57), (504, 166, -137, -68))]

3 More Information

3.1 Availability

The source code is available at https://www.bitbucket.org/malb/lwe-generator and has also
been submitted for inclusion in Sage [S+13].

The generator is also available as an interactive service at:

http://aleph.sagemath.org/?z=eJzLyU9M0VDKKCkpKLbS10_KLEkqTc5OLdHLL0rXz03MSdLPKU_VTU_

NSy1KLMkv0i9KLNcvySwAieoVVCpp8nIBWQq2CkGp6allGnm2xgZAoYKizLwSBaAEWFZDEwD2OyF9&lang=

sage

3.2 Further Documentation

For further documentation we refer the reader to the module itself and Sage’s documentation,
available at http://sagemath.org/doc/ .
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3.3 Mailing List

We have established a mailing list for the purposes of collecting and sharing experiences with the
different LWE instances and also for any questions directed to the authors regarding the project.
The list also covers ideas for new LWE instances which should be integrated into the generator.
The mailing list can be reached via

http://groups.google.com/group/lwe-challenge-devel .
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