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Introduction and Summary

In the present paper a mathematical theory of cryptography
and secrecy systems is developed. The entire approach is on a
theoretical level and is intended to complement the treatment found in
standard works on cryptography.* There, a detailed study is made
of the many standard types of codes and ciphers, and of the ways of
breaking them. We will be more concerned with the general mathematical
structure and properties of secrecy systems.

The presentation is mathematical in character. We first define
the pertinent terms abstractly and then develop our results as lemmas
and theorems. Proofs which do not contribute to an understanding of the
theorems have been placed in the appendix.

The mathematics required is drawn chiefly from probability
theory and from abstract algebra. The reader is assumed to have
some familiarity with these two fields. A knowledge of the elements
of cryptography will also be helpful although not required.

The treatment is limited in certain ways. First, there are
two general types of secrecy system; (1) concealment systems,
including such methods as invisible ink, concealing a message in an
innocent text, or in a fake covering cryptogram, or other methods in
which the existence of the message is concealed from the enemy; (2)
“true” secrecy systems where the meaning of the message is concealed
by cipher, code, etc., although its existence is not hidden. We consider
only the second type—concealment systems are more of a psychological
than a mathematical problem. Secondly, the treatment is limited to the
case of discrete information, where the information to be enciphered
consists of a sequence of discrete symbols, each chosen from a finite
set. These symbols may be letters in a language, words of a language,

* See, for example, H.F.Gaines, “Elementary Cryptanalysis,” or
M. Givierge, “Cours de Cryptographie.”
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amplitude levels of a “quantized” speech or video signal, etc., but the
main emphasis and thinking has been concerned with the case of letters.
A preliminary survey indicates that the methods and analysis can be
generalized to study continuous cases, and to take into account the
special characteristics of speech secrecy systems.

The paper is divided into three parts. The main results of
those sections will now be briefly summarized. The first part deals with
the basic mathematical structure of language and of secrecy systems. A
language is considered for cryptographic purposes to be a stochastic
process which produces a discrete sequence of symbols in accordance with
some systems of probabilities. Associated with a language there is a
certain parameter D which we call the redundancy of the language. D
measures, in a sense, how much a text in the language can be reduced in
length without losing any information. As a simple example, if each word
in a text is repeated a reduction of 50 per cent is immediately possible.
Further reductions may be possible due to the statistical structure of
the language, the high frequencies of certain letters or words, etc. The
redundancy is of considerable importance in the study of secrecy systems.

A secrecy system is defined abstractly as a set of trans-
formations of one space (the set of possible messages) into a second space
(the set of possible cryptograms). Each transformation of the set
corresponds to enciphering with a particular key and the transformations
are supposed reversible (non-singular) so that unique deciphering is
possible when the key is known.

Each key and therefore each transformation is assumed to have
an a priori probability associated with it—the probability of choosing
that key. The set of messages or message space is also assumed to have
a priori probabilities for the various messages, i.e., to be a probability
Or measure space.

In the usual cases the “messages” consist of sequences of
“letters.” In this case as noted above the message space is represented
by a stochastic process which generates sequences of letters according
to some probability structure.

These probabilities for various keys and messages are
actually the enemy cryptanalyst’s a priori probabilities for the choices
in question, and represent his a priori knowledge of the situation. To
use the system a key is first selected and sent to the receiving point.
The choice of a key determines a particular transformation in the set
forming the system. Then a message is selected and the particular
transformation applied to this message to produce a cryptogram. This
cryptogram is transmitted to the receiving point by a channel that may be
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intercepted by the enemy. At the receiving end the inverse of the
particular transformation is applied to the cryptogram to recover
the original message.

If the enemy intercepts the cryptogram he can calculate
from it the a posteriori probabilities of the various possible
messages and keys which might have produced this cryptogram. This
set of a posteriori probabilities constitutes his knowledge of the key
and message after the interception.” The calculation of these a
posteriori probabilities is the generalized problem of cryptanalysis.

As an example of these notions, in a simple substitution
cipher with random key there are 26! transformations, corresponding
to the 26! ways we can substitute for 26 different letters. These are all
equally likely and each therefore has an a priori probability 1/26!. If
this is applied to “normal English” the cryptanalyst being assumed to have
no knowledge of the message source other than that it is English, the
a priori probabilities of various messages of N letters are merely
their frequency in normal English text.

If the enemy intercepts N letters of cryptogram in this
system his probabilities change. If N is large enough (say 50 letters)
there is usually a single message of a posteriori probability nearly
unity, while all others have a total probability nearly zero. Thus
there is an essentially unique “solution” to the cryptogram. For
N smaller (say N = 15) there will be many messages and keys of
comparable probability, with no single one nearly unity. In this case
there are multiple “solutions” to the cryptogram.

Considering a secrecy system to be a set of trans-
formations of one space into another with definite probabilities
associated with each transformation, there are two natural combining
operations which produce a third system from two given systems.
The first combining operation is called the product operation and
corresponds to enciphering the message with the first system R and
enciphering the resulting cryptogram with system S; the keys for R
and S being chosen independently. This total operation is a secrecy
system whose transformations consist of all the products (in the
usual sense of products of transformations) of transformations in S
with transformations in R. The probabilities are the products of the
probabilities for the two transformations.

The second combining operation is “weighted addition.”

T=pR+qS pt+g=1

* “Knowledge” is thus identified with a set of propositions having
associated probabilities. We are here at variance with the doctrine
often assumed in philosophical studies which considers knowledge to be
a set of propositions which are either true or false.
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It corresponds to making a preliminary choice as to whether
system R or S is to be used with probabilities p and ¢, respectively.
When this is done R or S is used as originally defined.

It is shown that secrecy systems with these two combining
operations form essentially a “linear associative algebra” with a unit
element, an algebraic variety that has been extensively, studied by
mathematicians. Some of the properties of this algebra are developed.

Among the many possible secrecy systems there is one type
with many special properties. This type we call a “pure” system. A
system is pure if for any three transformations 7;, T}, T} in the set
the product

T,T; ' T

is also a transformation in the set, and all keys are equally likely.
That is enciphering, deciphering, and enciphering with any three keys
must be equivalent to enciphering with some key.

With a pure cipher it is shown that all keys are essentially
equivalent—they all lead to the same set of a posteriori probabilities.
Furthermore, when a given cryptogram is intercepted there is a set of
messages that might have produced this cryptogram (a “residue class”)
and the a posteriori probabilities of messages in this class are
proportional to the a priori probabilities. All the information the enemy
has obtained by intercepting the cryptogram is a specification of the
residue class. Many of the common ciphers are pure systems, including
simple substitution with random key. In this case the residue class
consists of all messages with the same pattern of letter repetitions
as the intercepted cryptogram.

Two systems R and S are defined to be “similar” if there
exists a fixed transformation A with an inverse, A~! such that

R=ASA™!

If R and S are similar, a one-to-one correspondence between the
resulting cryptograms can be set up leading to the same a posteriori
probabilities. The two systems are cryptanalytically the same.

The second main part of the paper deals with the prob-
lem of “theoretical security”. How secure is a system against
cryptanalysis when the enemy has unlimited time and manpower
available for the analysis or intercepted cryptograms?
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“Perfect Secrecy” is defined by requiring of a system
that after a cryptogram is intercepted by the enemy the a posteriori
probabilities of this cryptogram representing various messages be
identically the same as the a priori probabilities of the same
messages before the interception. It is shown that perfect secrecy
is possible but requires, if the number of messages is finite, the
same number of possible keys—if the message is thought of as being
constantly generated at a given “rate” R, (to be defined later), key
must be generated at the same or a greater rate.

If a secrecy system with a finite key is used, and N
letters of cryptogram intercepted, there will be, for the enemy, a
certain set of messages with certain probabilities, that this cryptogram
could represent. As N increases the field usually narrows down until
eventually there is a unique “solution” to the cryptogram—one
message with probability essentially unity while all others are practically
zero. A quantity Q(N) is defined, called the equivocation, which measures
in a statistical way how near the average cryptogram of N letters is to a
unique solution; that is, how uncertain the enemy is of the original
message after intercepting a cryptogram of N letters. Various properties
of the equivocation are deduced—for example the equivocation of the key
never increases with increasing N. This quantity @ is a theoretical secrecy
index—theoretical in that it allows the enemy unlimited time to analyse
the cryptogram.

The function Q(N) for a certain idealized type of cipher
called the random cipher is determined. With certain corrections this
function can be applied to many cases of practical interest. This gives a
way of calculating approximately how much intercepted material is
required to obtain a solution to a secrecy system. It appears from this
analysis that with ordinary languages and the usual types of ciphers (not
codes) this “unicity distance” is approximately |K|/D. Here |K]| is a
number measuring the “size” of the key space. If all keys are a priori
equally likely |K| is the logarithm of the number of possible keys. D is
the redundancy of the language and measures the excess information
content of the language. In simple substitution with random key on English
| K| is logyo 26! or about 20 and D is about .7 for English. Thus unicity occurs
at about 30 letters.

It is possible to construct secrecy systems with a finite
key for certain “languages” in which the function Q(N) does not approach
zero as N — oo. In this case, no matter how much material is intercepted,
the enemy still does not get a unique solution to the cipher but is left with
many alternatives, all of reasonable probability. Such systems we call
ideal systems. It is possible in any language to approximate such be-
havior—i.e., to make the approach to zero of Q(N) recede out to
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arbitrarily large N. However, such systems have a number of draw-
backs, such as complexity and sensitivity to errors in transmission of
the cryptogram.

The third part of the paper is concerned with “practical
secrecy.” Two systems with the same key size may both be uniquely
solvable when N letters have been intercepted, but differ greatly in the
amount of labor required to effect this solution. An analysis of the basic
weaknesses of secrecy systems is made. This leads to methods for constructing
systems which will require a large amount of work to solve. A certain
incompatability among the various desirable qualities of secrecy systems is
discussed.
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PART I
FOUNDATIONS AND ALGEBRAIC STRUCTURE OF SECRECY SYSTEMS

1. Choice, Information and Uncertainty

Suppose we have a set of possible events whose proba-
bilities of occurrence are p1,po,...,p,. These probabilities are
known, but that is all we know concerning which event will occur. Can
we define a quantity which will measure in some sense how “uncertain”
we are of the outcome? How much “choice” is involved in the selection
of the event by the chance element that operates with these proba-
bilities? We propose as a numerical measure of this rather vague
notion the quantity

H=-> pilogp;.
=1

There are many reasons for this particular formula. Quantities of this
kind appear continually in the present paper and in the study of the
transmission of information.

To justify this definition we will state a number of
properties that follow from it. These properties will not be proved
here,* but are easily deduced from the definition. Properties of

H = =3 pilogp

1. H =0 if and only if all the p; but one are zero, this one having the
value unity. Thus only when we are certain of the outcome does H vanish.

2. For a given n, H is a maximum and equal to logn if and only if all
the p;. are equal (i.e. 1/n). This is also intuitively the most uncertain.
situation.

3. Suppose there are two events in question, with m possibilities for the
first and n for the second. Let p;; be the probability of the joint
occurrence of i for the first and j tor the second. The uncertainty of
the joint event is

H=- Zpij log pij.-
(2%

For given probabilities p; = ) ; Dij for the first and

* It is intended to develop these results in coherent fashion in a
forthcoming memorandum on the transmission of information.
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q; = >, pij for the second, the quantity H is maximized if and only if
the events are independent, i.e., p;; = p;q;. This maximum value, is the
sum of the individual uncertainties

H =H,+H,
=—Y pilogp;i — 3 g;logg;.

These facts can be generalized to any number of different events.

4. Suppose there are two chance events A and B as in 3, not necessarily
independent. We define the mean conditional uncertainty of B, knowing A
as

Ha=Y p(A)Ha(B)
A

where H(B) is the uncertainty of B when A has a definite value A

Thus H 4(B) is the average uncertainty of B for all different events

A, weighted according to their different probabilities of occurrence. The
uncertainty of the joint event is the sum of the uncertainty of the first and
the mean conditional uncertainty of the second. In symbols

H(A, B) = H(A) + A (B)
This is true whether or not there are any casual connections or

correlations between the two events.

5. In the same situation the uncertainty of B is not greater than the
joint uncertainty H (A, B).

H(B) < H(A, B)

The equality holds if and only if every B (of probability greater
than zero) is consistent with only one A. That is, if A is uniquely de-
termined by B.

6. From properties 3 and 4 we have

H(A) + H(B) > H(A, B)
H(B) > H(A,B) — H(A)
= H(A) +Ha(B) — H(A)
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Thus the uncertainty of B is not greater than its average value when
we know A. Additional information never increases average un-
certainty. The equality holds if and only if A and B are independent.

7. Suppose we have a set of probabilities p1,pa,...,pn
Any change toward equalization of these (supposing them unequal)
increases H. Thus if p; < ps and we increase p;, decreasing ps
an equal amount (to keep the sum Y p; constant at unity) so that p;
and po are more nearly equal, then H increases. More generally if
we perform any “averaging” operation on the p; of the form

pi= ) aip;

where ). a;; =1 and all a;; > 0 then H increases (except in the
special case where this transformation amounts to no more than
a permutation of the p; with H of course remaining the same).

8. H measures in a certain sense how much “information is
generated” when the choice is made. Suppose such a chance event
occurs and we wish to describe which of the n possible events
took place. The average amount of paper required to write it
down in a properly chosen notation is in the cases of interest to
us, about proportional to H. Thus there might be 103° 4 105°
possible events, with 103° of them having a probability %10’30
and 107°0 a probability of %10_50. We could set up a notational
system to describe which event occurs as follows. We number the
events from 1 up to 10%° 4+ 10°° and when one occurs write down
the corresponding number. The average amount of paper
required will be proportional to the average number of digits we
need. This will be nearly 30 if the event is in the first group of
103° and about 50 if in the second group. Thus the average
number of digits is about 40. We also have

1 1. . 1 1
H=-1 3071 -1 3071 5071 -1 50&4
0 20g20 0 20g20 0
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9. Although the last result is only approximately true when the
number of choices is finite it becomes exactly true when an
unlimited sequence of choices is made. Thus if a sequence of
N independent choices is taken each choice being from n
possibilities with probabilities pq,...,p, then the total
amount of information generated is

H=-NY_pilogp

If N is sufficiently large, the expected number of digits required
to register the particular choice made is arbitrarily close to H,
providing the correspondence between sequences of digits and sets
of choices is correctly made. If incorrectly made it will be

greater than H. Moreover, if N is sufficiently large the probability
of needing much more than H digits is very small.

10. It can be shown that if we require certain reasonable properties of
a measure of choice or uncertainty then the formula — > p; log p;
necessarily follows. These required properties and the proof of
this statement are given in Appendix I. The chief property is that
the measure be in a sense additive—if a choice be decomposed
into a series of choices the total choice is the sum (properly
weighted) of the individual choices.

11. Finally we note that quantities of the type > p; log p; have appeared
previously as measures of randomness, particularly in statistical
mechanics. Indeed the H in Boltmann’s H theorem is defined in
this way, p; being the probability of a system being in cell 7 of its
phase space. Most of the entropy formulas contain terms of this type.

The base which is used in taking logarithms in the formula.
amounts to a choice of the unit of measure. If the base is 10
we will call the resulting units “digits;” if the base is two the
units will be called “alternatives.” One digit is about 3.3
alternatives. A choice from 1000 equally likely possibilities is
3 digits or about 10 alternatives.

2. Language as a Stochastic Process

A natural language, such as English, can be studied
from many points of view—lexicography, syntax, semantics,
history, aesthetics, etc. The only properties of a language
of interest in cryptography are statistical properties. What
are the frequencies of the various letters, of different digrams
(pairs of letters), trigrams, words, phrases, etc.? What is the
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probability that a given word occurs in a certain message? The
“meaning” of a message has significance only in its influence
on these probabilities. For our purposes all other properties of
language can be omitted. We consider a language, therefore, to
be a stochastic (i.e., a statistical) process which generates a
sequence of symbols according to some system of probabilities.
The symbols will be the letters of the language, together with
punctuation, spaces etc., if these occur.

Conversely any stochastic process which produces a discrete
sequence of symbols will be said to be a language. This will include such
cases as:

1. Natural written languages such as English, German, Chinese.

2. Continuous information sources that have been rendered discrete
by some quantizing process. For example, the quantized speech
from a PCM transmitter, or a quantized television signal.

3. “Artificial” languages, where we merely define abstractly a
stochastic process which generates a sequence of symbols. The
following are examples of artificial languages.

(A) Suppose we have 5 letters A,B,C,D,E which are chosen each
with probability .2, successive choices being independent.
This would lead to a sequence of which the following is a
typical example.

BDCBCECCCADCBDDAAECEEA
ABBDAEECACEEBAEECBCEAD

This was constructed with the use of a table of random
numbers.*

(B) Using the same 5 letters let the probabilities be 4, .1, .2,
.2, .1 respectively, with successive choices independent. A
typical “text” in this language is then:

AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD

(C) A more complicated structure is obtained if successive
letters are not chosen independently but their probabilities
depend on preceding letters. In the simplest case of this

* Kendall and Smith, “Tables of Random Sampling Numbers”
Cambridge, 1939.
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type a choice depends only on the preceding letter and not
on ones before that. The statistical structure can then be
described by a set of transition probabilities p;(7), the
probability that letter i is followed by letter j. The indices
7 and j range over all the letters in the language. A second
equivalent way of specifying the structure is to give the
digram probabilities p(i, ), the relative frequency of the
digram 75 in the language. The letter frequencies p(i),

(the probability of letter ). the transition probabilities p;(7)
and the digram probabilities p(i, j) are related by the
following formulas.

p(i) = >, p(i,7) = >2;p(5,4) = >, p(3)p; (i)

p(i, j) = p(i)pi(4)

Zj pi(j) =22, p(i) = Z” p(i,j) =1
As a specific example suppose there are three letters A, B, C with the
probability tables:

pi(d) | p(i) p(i.g) | J
A B C A B C
4
A0 8 2 A % A 2 i &

A typical text in this language is the following.

ABBABABABABABABBBABBDBDBBAB
ABABABABBBACACABBABBBBABB
ABACBBBABA

The next increase in complexity would involve trigram frequencies
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but no more. The choice of a letter would depend on the preceding

two letters but not on the text before that point. A set of trigram
frequencies p(i, j, k) or equivalently a set of transition proba-

bilities p;; (k) would be required. Continuing in this way one

obtains successively more complicated stochastic processes. In

the general n-gram case a set of n-gram probabilities p(i1, 2, ..., i,) or of
transition probabilities p;, iy, ..., (in) is required

to specify the statistical structure.

(D) Stochastic processes can also be defined which produce a text
consisting of a sequence of “words.” Suppose there are 5 letters
A, B, C, D, E, and 16 “words” in the language with associated

probabilities:
10 A .16 BEBE .11 CABED .04 DEB
.04 ADEB .04 BED .05 CFEED .15 DEED
.05 ADEFE .02 BEED .08 DAB .01 FEAB
.01 BADD .05 CA .04 DAD .05 FEFE

Suppose successive “words” are chosen independently and are
separated by a space. A typical message might be:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE
BEBE ADEE BED DEED DEED CEED ADEE A DEED DEED BEBE
CABED BEBE BED DAB DEED ADEB

If all the words are of finite length this process is equivalent to
one of the preceding type, but the description may be simpler in
terms of the word structure and probabilities. We may also
generalize here and introduce transition probabilities between
words, etc.

These artificial languages are useful in constructing simp-
le problems and examples to illustrate various possibilities. We can also
approximate to a natural language by means of a series of simple artificial
languages. The zero order approximation is obtained by choosing all
letters with the same probability and independently. The first order
approximation is obtained by choosing successive letters independently but
each letter having the same probability that it does in the natural language.
Thus in the first order approximation to English E is chosen with
probability .12 (its frequency in normal English) and W with probability .02,
but there is no influence between adjacent letters and no tendency to form
the preferred digrams such as TH, ED, etc. In the second order
approximation digram structure is introduced. After a letter is chosen, the
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next one is chosen in accordance with the frequencies with which the
various letters follow the first one. This requires a table of digram
frequencies p;(j), the frequency with which letter j follows letter . In the

third order approximation trigram structure is introduced. Each letter is
chosen with probabilities which depend on the preceding two letters.

3. The Series of Approximations to English

To give a visual idea of how this series of processes approaches

a language, typical sequences in the approximations to English have been
constructed and are given below. In all cases we have assumed a 27
symbol “alphabet,” the 26 letters and a space.

1.

Zero order approximation (symbols independent and equiprobable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSCXYD
QPAAMKBZAACIBZLHJQD

First order approximation (symbols independent but with

frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

Second order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D
ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE
SEACE CTISBE

Third order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME

OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF
CRE

1st Order Word Approximation. Rather than continue with
tetragram,

..., n-gram structure, it is easier and better to jump at this point to
word units. Here words are chosen independently but with their
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME
CAN DIFFERENT NATURAL HERE HE THE A IN CAME THE
TO OF TO EXPERT GRAY COME TO FURNISHES THE LINE
MESSAGE HAD BE THESE.
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6. 2nd Order Word Approximation. The word transition
probabilities are correct but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN
UNEXPECTED

The resemblance to ordinary English text increases quite
noticeably at each of the above steps. Note that these samples have
reasonably good structure out to about twice the range that is taken into
account in their construction. Thus in (3) the statistical process insures
reasonable text for two-letter sequence, but four-letter sequences from the
sample can usually be fitted into good sentences. In (6) sequences of 4 or
more words can easily be placed in sentences without unusual or strained
constructions. The particular sequence of ten words “attack on an English
writer that the character of this” is not all unreasonable.

The first two samples were constructed by the use of a book of
random numbers in conjunction for (2) with a table of letter frequencies. This
method might have been continued for (3), (4), and (5), since digram, trigram,
and word frequency tables are available, but a simpler equivalent method was
used. To construct (3) for example one opens a book at random and selects a
letter at random on the page. This letter is recorded. The book is then opened
to another page and one reads until this letter is encountered. Thesucceeding
letter is then recorded. Turning to another page this second letter is searched
for and the succeeding letter recorded, etc. A similar process was used for (4),
(5), and (6). It would be interesting if further approximations could be
constructed, but the labor involved becomes enormous at the next stage.

The stochastic process 6 is already sufficiently close to
English for many cryptographic purposes since most cryptanalysis is
based on “local” structure of not more than two or three words in length.

4. Graphical Representation of a Markoff Process

Stochastic processes of the type described above are
known mathematically as discrete Markoff processes and have been
extensively studied in the literature.* The general case can be described
as follows. There exist a finite number of possible “states” of a system:

* For a detailed treatment see M. Frechet, “Methods des fonctions
arbitraires. Theorie des évenéments en chaine dans le cas d’un nombre
fini d’états possibles,” Paris, Gauthier-Villars, 1938.
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S1,82,...,S, In addition there is a set of transition probabilities: ¢;(7)
the probability that if the system is in state S; it will next go to state Sj.
To make this Markoff process into a language generator we need only
assume that a letter is produced for each transition from one state to an-
other. The states will correspond to the
preceding letters.

“residue of influence” from

The situation can be represented graphically as shown in
Figs. 1, 2, 3 and 4. The “states” are the junction points in the graph and
the probabilities and letters produced for a transition are given beside the
corresponding line. Fig. 1 is for the example B in Section 2, while Fig. 2,
corresponds to the example C. In Fig. 1 there is only one state since
successive letters are independent. In Fig. 2 there are as many states
as letters. If a trigram example were constructed there would be at most
n 2 states corresponding to the possible pairs of letters preceding the one
being chosen. Figs. 3 and 4 show two graphs for the case of word
structure in example D. In these S corresponds to the “space” symbol. In
Fig. 3 each word has a separate chain of branches from the left to the right
junction point, while in Fig. 4 the branches have been combined, simplifying
the graph.

5. Pure and Mixed Languages

As we have indicated above a “language” for our purposes can be
considered to be generated by a Markoff process. Among the
possible discrete Markoff processes there is a group with special
properties of significance in cryptographic work. This special class
consists of the “ergodic” processes and we shall call the corresponding
languages “pure languages.” Although a rigorous definition of an
ergodic process is somewhat involved, the general idea is simple. In an
ergodic process every sequence produced by the process is the same in
statistical properties. Thus the letter frequencies, digram frequencies,
etc., obtained from particular sequences will, as the lengths of the
sequences increases, approach definite limits independent of the particular
sequence. Actually this is not true of every sequence but the set for which
it is false has probability zero. Roughly the ergodic property means
statistical homogeneity.

All the examples of artificial languages given above are pure,
the corresponding Markoff process being ergodic. This property is
related to the structure of the corresponding graph. If the graph has
two properties the language it generates will be pure. These properties
are:
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1. The graph cannot be divided into two parts A and B such that it
is impossible to go from junction points in part A to junction
points in part B along lines of the graph in the direction of arrows
and also impossible to go from nodes in part B to nodes in part A.

2. A closed series of lines in the graph with all arrows on the lines
pointing in the same orientation will be called a “circuit.” The
“length” of a circuit is the number of lines in it. Thus in Fig. 4
the series BEBES is a circuit of length 4. The second property
required is that the greatest common divisor of the lengths of all
circuits in the graph be one.

If the first condition is satisfied but the second one
violated by having the greatest common divisor equal to d > 1, the sequences
have a certain type of periodic structure. The various sequences fall
into d different classes which are statistically the same apart from a
shift of the origin (i.e. which letter in the sequence is called letter 1). By
a shift of from 0 up to d — 1 any sequence can be made statistically
equivalent to any other. A simple example with d = 2 is the following.
There are three possible letters a,b,c. Letter a is followed with
either b or ¢ with probabilities % and % respectively. Either b or c¢ is
always followed by letter a. Thus a typical sequence is

abacacacabacababacac

This type of situation is not of much importance for our work.

If the first condition is violated the graph may be “separated”
into a set of subgraphs each of which satisfies the first condition. We
will assume that the second condition is also satisfied for each subgraph.
We have in this case what may be called a “mixed” language made up of a
number of pure components. The components correspond to the various
subgraphs. If L, Ly, L3, ... are the component languages we may
write

L=p1Ly+palo+p3ls+---

where p; is the a priori probability of the component language L;.

Physically the situation represented is this. There: are
several different languages L, Lo, L3, . .. which are each of
homogeneous statistical structure (i.e., they are pure languages). We
do not know a priori which is to be used, but once the sequence starts
in a given pure component L; it continues indefinitely according to the
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statistical structure of that component. We do have, however, a set
of a priori probabilities for the various components, p1,,p2,- - ..

As an example one may take two of the artificial languages
defined above and assume p; = .2 and ps = .8. A sequence from the
mixed langunge

L=2L+ 8L,

would be obtained by choosing first Ly or L, with probabilities .2 and
,8 and after this choice generating a sequence from whichever was
chosen.

A natural language, such as English or German, is not, of
course, pure. Different kinds of text, literary, newspaper, technical or
military, display consistently different types of structure. These
differences are small, however, in comparison with the differences
between different natural languages. If only local structure—letter,
digram and trigram frequencies, for instance—is of much importance,
it is reasonable to consider “normal English” to be nearly pure.

6. Information Rate and Redundancy of a Language

Suppose we have a pure language L produced by a given
Markoff process. Associated with the language there are certain
parameters which are of significance in questions of transforming the
language and in cryptography. The most important of these is what we
will call the “information rate” R for the language. It measures the
rate at which the Markoff process “generates information,” as de-
termined by the measurement of the amount of choice available on the
average per letter of text that is produced. In Section 1 we defined
the amount of choice when there are various possibilities with proba-
bilities p1,p2, ..., Pn as

H=-Y pilogp,

In a Markoff process with a number of different “states” there will be
a choice value H; for each of these states and a probability of being in
each of the states (or a frequency with which this state occurs). If
this relative frequency for state 7 is p;, the average amount of choice is

R=Y pH,

summed over all the states. This is the definition of the information rate
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for the language. If p;(j) is the probability of producing letter j when in
state ¢ we have

Hy = pi(j)log pi(5)

the sum being over all the letters in the language. Thus

R= Zpipi(j)logpi(j)

The information rate R has the units of alternatives (or
digits) per letter since it measures the average amount of choice per
letter of text that is produced.

A second parameter of importance is the “maximum
rate” Ry for the source. This is defined simply as the logarithm of the
number of different letters in the language. R is also measured in al-
ternatives or digits per letter. If successive letters are chosen inde-
pendently and each letter is equally likely Ry = R. Otherwise we have
R < Ry.

R and Ry are actually two limiting cases of information
rates for the language. Ry may be said to be the rate when no statistical
structure is taken into consideration and R is the rate when all the
structure is taken into account. Between these there is an infinite series
of rates Ry, Ra,..., Ry, ... which take some of the statistical structure
into account. R; takes the letter frequencies into account and is defined
by

Ry = p(i)logp(i)

where p(i) is the probability of letter 4.
R, takes digram structure into account and is defined by

Ry = Zp(i)pi(j) log p; ()

where the p(i) are letter probabilities and p;(j) the transition
probabilities, i.e., the probability of letter ¢ being followed by
letter j. In general we define

R, = E P81, 92, -+« s in—1)Pirig,....in_1Pirig,..in_1 (in)
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where the sum is on all indices i1,...,%, and p;, .
is the probability of (n — 1)- gram ; ...4,—1 with
Diyia,....in_y (in) the probability of this (n — 1)-gram being followed by
letter i,. R, may be called the n-gram information rate for the
language. It can be shown that

Sin—1

Ry>Ri>Ry>-->Ry>--Ru =R

These rates determine how much a language can be “compressed”

in length by a suitable encoding process. A language with maximum
rate Ry and rate R can be transformed in such a way that a
sequence of letters N letters long is transformed into a sequence of
letters only N’ letters long where

N/R():NR

(This is approximate and only exactly true in the limit as N — o00.)
Thus the information is “compressed” in the ratio

R

Ry
This is the greatest compression ratio possible. It makes use of all
the statistical structure of the language. If only n-gram structure is
made use of, a compression ratio

R,
Ry
is the best possible.

The compression obtained in this way is only a
statistical gain. Some infrequent sequences are encoded into much
longer sequences while the more probable ones go into shorter
sequences so that on the average the length is decreased. It is the
type of compression obtained in telegraphy by using the shortest
telegraph symbol, a single dot, for the most frequent letter E, while
the uncommon letters Q, Z, etc., are encoded into longer telegraph
symbols. An average reduction in time of transmission is obtained
but there are possible sequences, e.g., QQQ ..., which require much
longer.

Performing a transformation on a language L which
compresses as much as possible will be called reducing L to a
“normal” form. When this has been done it can be shown that all
letters in the output are equally likely and independent. Actually to
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realize this transformation would usually require an infinitely
complex machine, but we can always approximate it as closely as
desired with a machine of finite complexity.

The quantity

D=Ry=-R

will be called the redundancy rate of the language. It measures the
excess information that is sent if sequences in the language are
transmitted in their original form (without compression or reduction

to normal form). Correspondingly there is a whole series of redundancy
rates:

Do=Ry—Ry=0

Dy =Ry— Ry
Dy =Ry — Ry
D, = Ry — Rn
D=Ry-R

D, is the redundancy rate due to n-gram structure in the language.

The redundancy D can also be said to measure the amount of
statistical structure in the language. If the sequence is purely random
D = 0 while at the other extreme if each letter is completely determined
by preceding letters with no freedom of choice, D has its maximum
possible value Ry. It is sometimes convenient to use the “relative”
redundancy D/Rg which must lie between 0 and 100%.

If we have a source of rate R, maximum rate Ry (both in digits
per letter) and consider the possible sequences of N letters these fall
into two groups for NV large. One group of “high probability” sequences
contains about

10RN



-22- CONHBENTAR

sequences (where we have assumed R measured in digits per letter).

All of these have substantially the same logarithmic probability.

The remainder of the total of 10%0N possible sequences are of very small
probability. In fact their total probability approaches zero as N increases.
The logarithm of the probability of an individual sequence in the high
probability group is thus about -RN. In a precise statement of these
results we must allow a certain fuzziness in R, i.e., replace R by R+ ¢
where ¢ — 0 as as N — o0.

Reduction of a language to normal form is performed by properly
matching the probabilities of sequences to the length of the corresponding
sequences in the normal form. The “high probability” sequences are
translated into short sequences and the remainder into longer sequences.

An example will clarify the results we have given. Let the
language contain 4 letters A, B, C, D. In a sequence successive letters
are chosen independently, the four letters having probabilities 1/2, 1/4,
1/8, 1/8, respectively. We have

Ry = log, 4 = 2 alternatives / letter

and

Ry, =Ry=Rs=---=R=—(1/2log1/2+1/4log1/4+2/8log1/8)
=1/2+1/2+6/8 = 7/4 alternatives / letter

By a suitable transformation the average length of sequences can be
reduced by the factor 7/74 = 7/8. A transformation to do it is the
following. First we translate into a sequence of binary digits (0 or 1)

by the following table

0
10
110
111

TQwe

After this pairs of the binary digits are translated into the original
alphabet as follows

00 A
01 B
10 ¢’

1 D
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For a typical sequence this works out as shown below:
Translation into binary digits:

AB C A B A C B B D A A D A D A
0 10 110 0 10 O 110 10 10 111 O O 111 O 111 O

Regrouping and translation back into letters:

0r o1 10 01 00O 11 01 01 O1 11 00 11 10 11 10

B/ B/ C/ B/ A/ D/ B/ B/ B/ D/ A/ D/ Cl D/ C/
In this case there are 16 letters in the original and 15 in the final text.
Thus due to the small redundancy and the shortness of the text only part
of the saving is evident. In a long text however the full reduction of 1/8
would appear. This may be verified directly in this case. In a long text of
N letters each letter will appear with about its appropriate frequency. Thus
the number of binary digits will be about

N[1/2~1+1/4'2+1/8~3+1/8-3]:EN

since each A gives one binary digit, each B gives two, etc. The number
of letters in the final text is half this since each pair of binary digits
goes into one letter. Thus the reduction is by a factor 7/8.

It is also easy to see in this case that the binary digits are
equally likely and independent, and from this that the final text letters are
also.

This situation is more complicated for mixed languages and we

shall not enter into it here, We may note, however, that if

L=piLi+paLlo+ -+ pnln
where L; is pure with rate R, then the long sequences of L fall
into (n + 1) groups. The first n groups correspond to the n pure components.
Those in group ¢ number about
10°“ N
and have logarithmic probability about

_RON

The last group contains all other sequences and has a small total
probability.

7. Redundancy Characteristic of a Language

The form of the curve D(N) as a function of N may be called
the redundancy characteristic of the language. In a rough way it describes
the way in which the redundancy appears. In Fig. 5 several types of
characteristics are shown, all with the same final redundancy. The way in
which this approach occurs is of importance in cryptography. For
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languages which reach the final redundancy at one or two letters (Curves
1 and 2) one type of cipher (ideal ciphers) can be used. For those which
remain near zero out to fairly large N (like Curve 5) another type is
appropriate. Natural languages are apt to show a characteristic more
like 3, and this makes them difficult to encipher with security by simple
means.

Examples:
1. A language in which successive letters are independent
but with different probabilities has a characteristic of
Type L

2. Consider a language constructed as follows. First select
268 different sequences of letters, each 16 letters long

from the 26'¢ possible sequences of this length.

This should be a random selection. The 16-letter sequences
chosen are the “words” of the language. Messages are
random sequences of these “words.” Such langunge has

a characteristic like the Curve 5.

3. A language with digram structure only, such as Example
C in Section 2 above, has a characteristic of the Type 2
in Fig. 5, reaching its final value at N = 2.

4. English has the characteristic 3 in Fig. 5.

The redundancy characteristic describes how the
structure in the language is spread out. If the structure is localized,
the curve rises rapidly to its final value. If there are long range in
influences the asymptotic value is approached more slowly. If the
structure is “locally” random the curve will remain near
zero for small N.
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8. Secrecy Systems

Before we can apply any mathematical analysis to secrecy
systems, it necessary to idealize the situation suitably, and to define in a
mathematically acceptable way what we shall mean by a secrecy system.
A “schematic” diagram of a general secrecy system is shown in Fig. 6. At
the transmitting end there are two information sources—a message
source and a key source. The key source produces a particular key from
among those which are possible in the system. This key is transmitted by
some means, supposedly not interceptible, e.g., by messenger, to the
receiving end, The message source produces a message (the “clear”)
which is enciphered, and the resulting cryptogram sent to the receiving
end by a possibly interceptible means, for example radio. At the
receiving end the cryptogram and key are combined in the decipherer to
recover the message.

Evidently the encipherer performs a functional operation. If
M is the message, K the key, and E the enciphered message, or cryptogram,
we have

E=f(MK)

i.e., F is a function of M and K. We prefer to think of this, however, not as
a function of two variables but as a (one parameter) family of operations or
transformations, and we write it

E=TM

The transformation T; applied to message M produces cryptogram.
E. The index i corresponds to the particular key being used. If there are m
possible keys there will be m transformations in the family 77,75, ... T),.

At the receiving end it must be possible to recover M, knowing
F and K. Thus the transformations in the family must have unique inverses

M=T'F

at any rate this inverse must exist uniquely for every E which can be
obtained from an M with key 4.

The key source can be thought of as a “probability machine,”
something which chooses from the possible keys according to a system
of probabilities. Mathematically then, the keys (or the parameter of the
family of transformations) belong to a probability or measure space.
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Hence we arrive at the definition:

A secrecy system is a family of uniquely reversible trans-
formations T; of a message space 1), into a cryptogram space g, the
parameter i belonging to a probability space Q. Conversely any set of
entities of this type will be called a “secrecy system”.

The system can be visualized mechanically as a machine
with one or more controls on it. A sequence of letters, the message,
is fed into the input of the machine and a second series emerges at the
output. The particular setting of the controls corresponds to the particular
key being used. Some method must be prescribed for choosing the key
from all the possible ones.

To make the problem mathematically tractable we shall
assume that the enemy knows the system being used. That is, he knows
the family of transformations T, and the probabilities of choosing various
keys.

One might object to this as being unrealistic, in that the
cryptanalyst often does not know what system was used or the
probabilities of various keys. There are two answers to this objection.

Examples:
1. The assumption is actually the one ordinarily used
in cryptographic studies. It is pessimistic and
hence safe, but in the long run realistic
(particularly in military work), since one must expect his
system to be found out eventually through espionage,
captured equipment, prisoners, etc. Thus, even
when an entirely new system is devised, so that the enemy
cannot assign any a priori probability to it without
discovering it himself, one must still live with the
expection of his eventual knowledge.

2. The restriction is much weaker them appears at first,
due to our broad definition of what constitutes the
system. Suppose a cryptographer intercepts a message
and does not know whether a substitution, transposition,
or Vigenere type cipher was used. He can consider

this as being enciphered by a system in which

part of the key is the specification of which of these
types was used, the next part being the particular

key for that type. These three different possibilities

are assigned probabilities according to his

best guess of of the a priori probabilities of the
encipherer using the respective types of cipher.
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A second possible objection to our definition of secrecy systems
is that no account is taken of the common practice of inserting nulls in a
message and the use of multiple substitutes. Thus there is not a unique
FE =T;M, but actually the encipherer can choose at will among a number
of different E’s for the same message and key. This situation could be
handled, but would only add complexity at the present stage, without
altering any of the basic results. To define the more general secrecy
system, one would add a second parameter to the transformations T;
which corresponds to the various choices of cryptograms corresponding
to a given message and key. It is possible, but not always desirable, to
consider this second parameter as part of the key, since it does not need
to be transmitted to the receiving point.

We also assume that the enemy is in possession of a measure
in the space s, the a priori probabilities of various messages. The
same objection and essentially the same answers might be given to this
assumption as to his knowledge of the transformations 7;. This measure,
however, we do not consider as part of the secrecy system for reasons
which will appear later. The secrecy system whose transformations are
T; will be denoted by T and this concept includes the space 23, on which
T operates (without its measure), the transformations 7; and the spaces
Qx and Qpg, the former with its probability measure.

If the messages are produced by a Markoff process of the type
described previously, the probabilities of various messages are determined
by the structure of the Markoff process. For the present, however, we wish
to take a more general view of the situation and regard the messages as
merely an abstract set of entities with associated probabilities, not
necessarily composed of a sequence of letters and not necessarily produced
by a Markoff process.

It should be emphasized that throughout the paper a secrecy
system means not one but a set of many transformations. After the key
is chosen only one of these transformations is used and we might be led
to define a secrecy system as a single transformation on a language.*

The enemy, however, does not know what key was chosen and the “might
have been” keys are as important for him as the actual one. Indeed it is
only the existence of these other possibilities that gives the system

* A.A Albert in a paper presented at a Manhattan, Kansas, meeting of the
American Mathematical Society (Nov. 22, 1941), entitled “Some Mathematical
Aspects of Cryptography,” has defined a ciphering system in this way. With
this limited definition about all one can do is to describe and classify from
the mathematical point of view various types of transformations.
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any secrecy. Since the secrecy is our primary interest, we are forced

to this rather elaborate concept of a secrecy system. This type of
situation where possibilities are as important as actualities is almost
the rule in games of strategy. The course of a chess game is largely
controlled by threats which are not carried out. See also the “virtual
existence” of unrealized imputations in von Neumann’s theory of games.

There are a number of difficult epistemological questions
connected with the theory of secrecy, or in fact with any theory which
involves questions of probability (particularly a priori probabilities,
Bayes’ theorem, etc.) when applied to a physical situation. Treated
abstractly, probability theory can be put on a rigorous logical basis
with the modern measure theory approach.* As applied to
reality, however, especially when “subjective” probabilities
and unrepeatable experiments are concerned, there are
many questions of logical validity. For example in the approach
to secrecy made here, a priori probabilities of various keys
are assumed known by the enemy cryptographer—how can one
determine operationally if his estimates are correct, on the
basis of his knowledge of the situation?

It may happen that the keys are chosen by the encipherer
according to one system of probabilities, i.e., one measure in the key
space 0k and that the enemy cryptanalyst estimates a second different
system of probabilities €% in this space which are entirely reasonable
in the light of his knowledge of the situation—which is correct? I be-
lieve both are correct. The calculation based on Qx leads to the
solution when the enemy knows just how the keys are chosen and the
solution based on Q¢ K leads to solutions which are correct for a
situation agreeing with the enemy’s knowledge of the actual situation.
It appears intuitively that the enemy’s lack of knowledge can only do
him harm, and probably this can be proved, but this question has not
been investigated. In fact, we assume only one measure Qg in the key
space. Similar remarks may be made regarding measure in the
message space ;.

* See J. L. Doob, “Probability as Measure,” Annals of Math.
Stat., v. 12, 1941, pp. 206—214.
A. Kolmogoroff, “Grundbegriffe der Wahrscheinlichkeits
Rechnung,” Ergebnisse der Mathematic, v.2, No. 3 (Berlin
1933).
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Actually in practical situations, only extreme errors in a
priori probabilities of keys and messages cause much error in the
important parameters. This is because of the exponential behavior of
the number of messages, etc., and the logarithmic measures employed.

With regard to the application of the mathematical theory of
probability to physical situations there are two main theories or ways
of setting up the correspondence. (1) The frequency theory.
Probability is correlated with relative frequency of an event. This is the
correspondence used by the practicing statistician, in principle by the
physicist, etc. (2) The degree of belief approach. Probability is a
subjective phenomena and measures one’s degree of belief in the
occurrence of an event. This approach is seen often in the work of
historians, judges, and in everyday life. Although this latter approach
has often been attacked as meaningless we cannot agree with this
opinion. In the first place the intuitive approach can be given a
rigorous mathematical foundation. This has been done in a very elegant
way by B. O. Koopman.” Essentially one need only assume that a person
be capable of making probability judgments (Event A is more or less
probable than event B or they are equiprobable) and that his judgments
be self consistent (e.g., if he judges A more probable than B and B more
probable than C' he should judge A more probable than C). One can even
establish numerical values by the use of a “standard gauge,” for example
a roulette wheel, and thus relate the subjective and the frequency
probabilities. In the second place, on progmatic grounds one can hardly
ignore the subjective applications, since almost all of our everyday
decisions are based on this sort of probability judgment. Cryptographic
work involves both types of appliantions. In the use of frequency tables,
significance tests etc., the cryptanalyst is following the frequency approach,
In the “intuitive” methods of cryptanalysis (probable words etc.) the degree
of belief approach is more in evidence.

We may remark that a single operation on a language
which is reversible forms a degenerate type of secrecy system under
our definition—a system with only one key of unit probability. Such a
system has no secrecy—the cryptanalyst finds the message by applying
the inverse of this transformation, the only one in the system, to the
intercepted cryptogram. The decipherer and cryptanalyst is this case

T B. O. Koopman, “The Axioms and Algebra of Intuitive Probability.”
Annals of Mathematics, v.41, no.2, 1940, p.269.
“Intuitive Probabilities and Sequences,” v.42. no.1, 1941, p.169.
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possess the same information. In general, the only difference be-
tween the decipherer’s knowledge and the enemy cryptanalyst’s
knowledge is that the decipherer knows the particular key being
used, while the cryptanalyst only knows the a priori probabilities
of the various keys in the set. The process of deciphering is that

of applying the inverse of the particular transformation used in
enciphering to the cryptogram. The process of cryptanalysis is that
of attempting to determine the message (or the particular

key) given only the cryptogram and the a priori probabilities of
various keys and messages.

A system will be called “closed” if any possible
cryptogram can be deciphered with any possible key. This means
that the inverse transformations Ti_1 are all defined for every
element in the cryptogram space.

We shall use the notation |M| for the “size” of the
message space:

|M| =" P(M)log P(M)

where P(M) is the probability of message M and th e sum is over
all messages of just N letters. Thus |M| is a function of N, and
measures the amount of “choice” in the selection of an N letter
message. For large N, |M| is approximately RN. Similarly |K| is
the size of the key space

K| = - P(K)log P(K)
the sum being over all keys.

9. Representation of Systems

A secrecy system can be represented in various ways.
One which is convenient for illustrative purposes is a line diagram, as
in Figs. 7, 10, 11. The possible messages are represented by points at
the left and the possible cryptograms by points at the right. If a certain
key, say key 1, transforms message Ms into cryptogram FE4 then Ms and
FE, are connected by a line labeled 1, etc. From each possible message
there must be exactly one line emerging for each different key.

A second representation is by means of a rectangular
array. This may be done in three different ways. For the closed
system of Fig. 7, the three arrays are as follows:
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K E K
M 1 2 3 M | Ey Ey, FE; Ej E 1 2 3
M, | Ey Ei Ej My |1 3 2 By My My Ms;
M, | Es Ey Ej My |2 1 3 Ey | My My M
Ms; | Ey Es E; Ms |3 2 1 Es | My Ms My
M4 E2 EQ E3 M4 1,2 3 E4 Mg M1 MQ

From the first of these message M, with key 3 yields cryptogram Fjy.

From the second Mj is transformed into Eo by key. 3. No key transforms
M into E3 and either 1 or 2 transforms M}y into Es. From the third E3

is deciphered by key 2 to give M3. All of these arrays and the line diagram
contain equivalent information—from any one the others can be derived.

These arrays and diagrams only describe the set of trans-
formation in the system. To specify the system the probabilities of
various keys must also be given. This may be done by merely listing
the keys with the associated probabilities. Similarly the message source
is not completely specified until the probabilities of the various messages
are given.

A more common way of describing a system is to describe
the set of transformations by telling what operations one performs on the
message for an arbitrary key to obtain the cryptogram. Similarly one
defines implicitly the probabilities for various keys by describing how a
key is chosen, or what we know of the enemy’s habits of key choice. The
probabilities for messages are implicitly determined by stating our a
priori knowledge of the enemy’s language habits, the tactical situation
(which will influence the probable content of the message) and any special
information we may have regarding the cryptogram.

10. Notation

The following notation will generally be followed.
M = the message, also M;, M;, particular messages
K = the key E = the enciphered message or cryptogram
Qpnr = the set of all messages with associated probabilities, a probability
space
Qg = the set of keys with associated probabilities, also a probability space
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Qg = the cryptogram space, also a probability space, since the probabilities
in Q)7 and Qg induce probabilities in g, for each cryptogram.

m; = the i'h letter of the message

e; = the ith letter of the cryptogram

k; = the i'h letter of the key when it can be so described

Generally P stands for a probability. Conditional probabilities
are indicated with subscripts. Thus
P(M) = probability of message M
P(FE) = probability of cryptogram F
P(K) = probability of key K
Py (E) = conditional probability of F if message M is chosen
Pg (M) = conditional probability of M if cryptogram E is intercepted,
i.e. the a posteriori probability of M if E is observed.
() = equivocation, a concept to be defined precisely later, which
measures the uncertainty of some knowledge defined only by
probabilities. We also have conditional equivocations, thus
Qm(K) is the equivocation of the key knowing the message.
|K| = -5 P(K)log P(K) the size of the key space
|[M| = =5 P(M)log P(M) the size of the message space
|E| = =5 P(E)log P(E) the size of the cryptogram space
m = number of different keys
N = number of intercepted letters
R, = maximum information rate for a language
R = mean rate
D = R, — R = redundancy of a language
T, R, S, etc, = secrecy systems
T;, R;, S;, etc. = particular transformation of these systems

11. Some Examples of Secrecy Systems

In this section a number of examples of ciphers will be
given. These will often be referred to in the remainder of the paper for
illustrative purposes.

1. Simple Substitution Cipher.

In this cipher each letter of the message is replaced by a
fixed substitute, usually also a letter. Thus the message
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M =mq mg m3s my ---

becomes

E =e1e5e3ey

— f(m1) f(ma) f(mg) f(ma) -

where the function f(m) is function with an inverse. The key is a
permutation of the alphabet (when the substitutes are letters) e.g.
XGUACDTBFHRSLMQVYZWIEJOKNP

The first letter X is the substitute for A, G is the substitute for B, etc.

2. Transposition (Fixed Period d).

The message is divided into groups of length d and a
permutation applied to the first group, the same permutation to the
second group, etc. The permutation is the key and can be represented
by a permutation of the first d integers. Thus for d = 5 we might have
2 3 15 4 as the permutation. This means that m; ms ms myq ms mg
my mg Mg Myo . .. becomes

mo M3 M1 ™My My Ty T8 Mg M1 M9 . ... Sequential
application of two or more transpositions will be called compound
transposition. If the periods are dy,do,...,ds it is clear that the

result is a transposition of period d, where d is the least common
multlple of d17 dg, d37 ey ds-

3. Vigenere, and Variations.

In this cipher the key consists of a series of d letters. There
are written repeatedly below the message and the two added modulo 26
(considering the alphabet numbered from A = 0 to Z = 25). Thus
e; =m; +k; (mod 26)

where k; is of period d in the index 1.

For example with the key G A H we obtain

message NOWISTHE...
repeated key GAHGAHGA ...
cryptogram T ODOSANE...
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The Vigenere of period 1 is called the Caesar cipher. It is a simple
substitution in which each letter of M is advanced a fixed amount in
the alphabet. This amount is the key, which may be any number from
0 to 25. The so-called Beaufort and Variant Beaufort are similar to the
Vigenere, and encipher by the equations

e; = ki —m; (mod 26)

and

e; =m; —k; (mod 26)

respectively. The Beaufort of period one is called the reversed Caesar
cipher.

The application of two or more Vigenéres in sequences will
be called the compound Vigenere. It has the equation
where k;,l;,...s; in general have different periods. The period of
their sum

as in compound transposition, is the least common multiple of the
individual periods.

4. Vernam System.*

When the Vigenere is used with an unlimited key, never
repeating, we have the Vernam system, with

the k; being chosen at random and independently among 0, 1, ..., 25.
If the key is a meaningful text we have the “running key” cipher.

5. Bazeries Cylinder.

In this mechanical system 25 thick disks are used, each
having a mixed alphabet stamped around the edge. These disks can be
arranged in any order on a spindle, and the particular arrangement
used constitutes the key. With the disks in their proper order, a

* G. S. Vernam, “Cipher Printing Telegraph Systems for Secret Wire
and Radio Telegraphic Communications,” Journal Amer. Inst. of Elect.
Eng. V. XLV. pp. 109-115, 1926.
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message is enciphered by turning the disks so that the message appears
on a line parallel to the axis of the spindle. Any other line of letters may
then be chosen for the cryptogram. To decipher, the cryptogram is
arranged on a line and the decipherer looks for another line which then
makes sense.

6. Digram, Trigram, and N-gram substitution.

Rather than substitute for letters one can substitute for
digrams, trigrams, etc. General digram substitution requires a key
consisting of a permutation of the 262 digrams. It can be represented
by a table in which the row corresponds to the first letter of the digram
and the column to the second letter, entries in the table being the sub-
stitutes (usually also digrams).

7. Interrupted Key Vigenere.

The Vigenere and its variations can be used with an interrupted
key. The sequence of key letters is started again at irregularly spaced
points. Thus, if the entire key sequence is X P G HF T R S, one can
interrupt irregularly to get

XPGHFTXPGXPGHFTRXPXPG...

The points of interruption can be determined in various ways. (1).
Whenever a certain letter occurs in the clear. (2). Whenever a certain
letter occurs in the cryptogram. (3) An interrupting letter, say J, can
be reserved as a signal and the encipherer interrupts the key at his
discretion. (4). No signal is used and the decipherer locates the
interruptions by the meaningless text in the decipherment. In place of
starting the key again at each interruption one can omit letters of it or
reverse the direction of progression. There are many variations and
combinations of these methods.

8. Single Mixed Alphabet Vigenere.
This is a simple substitution followed by a Vigenere.

e; = f(mi) + ki
mi = [~ (ei — ki)
The “inverse” of this system is a Vigenere followed by simple

substitution

ei = g(m; + k;)



-35- COMNTBENTAE

mi =g '(e;) — ki
9. Vigenere with Progressing Key.

The period of a Vigenére can be expanded by adding a fixed
number ¢ to the key at each appearance—thus the n'” group is enciphered
by the equation

e; =m; + k; +nt

Also this can be varied by adding ¢ and s alternately to the key, etc.

10. Matrix System.*

One method of n-gram substitution is to operate on successive
n-grams with a matrix having an inverse. The letters are assumed
numbered from 0 to 2