How to Exchange Secrets with Oblivious Transfer

Michael O. Rabin

May 20, 1981

This paper originally appeared as
Michael O. Rabin. How to exchange secrets with oblivious transfer. Technical Report TR-81, Aiken Computation Lab, Harvard University, 1981.

Although the original manuscript has a different title, the paper is most commonly (if not only) cited with the title given here. Thus, it should continue to be cited in this manner with reference to the original technical report.

This file consists of two parts that preserve the original work, namely a scanned version and a typeset version in $\mathrm{ETE}_{\mathrm{E}} \mathrm{X}$.

A scanned version of the original hand-written manuscript (pp. 2-21)

This paper appeared in print as a Harvard University Technical Report, but at some point the university ran out of copies. At that time copies of the hand written version started to circulate, and were the only ones available. As access to these copies has become difficult I have scanned my copy of the paper and I'm posting it on the web for others to read.
-Tal Rabin
talr@us.ibm.com

A typeset version (pp. 22-25)

As this paper puts forward the notion of "Oblivious Transfers" and is a well-known and frequently cited paper, I felt I should typeset the manuscript, and here is the result.

While typesetting, I tried to stick to the original manuscript as much as possible. However, there were some cases, such as a few typos or punctuation marks, which were changed.

As in many papers on cryptography, Alice and Bob play the role of participants of the given cryptographic protocols. For the sake of readability, Alice's and Bob's messages were printed in red and blue ink, respectively.

This work was carefully proofread by my colleague Y. Sobhdel (sobhdel@ce.sharif.edu). Thanks also to H. M. Moghaddam for mentioning a minor mistake in an earlier version. That said, I will be thankful if you inform me of any possible mistakes.
may 20, 81
How to Exchange Secrets by
michael θ. Rabin

Introduction. Bob and Alice each have a secret, SB and SA, respectively, which then wish to exchange. For example, SB man le the password to a pile that alice wants to we shall raper to this file as access (Alice's file) and $S A$ threrontront Not tret eachato the password to Bo\&'s file. Cantier set up a protocol to exchange the secrets without using a trusted third party and without a safe mechanism for the simultaneous exchange of russayes?

To exclude the possibility of randomizing on the possible digits of the password, we assume that 4 an incorrect password is used then the file is erased, and that bob and Alice want to guarantor that this will Because of this assumption we can take, Sos without loss of generality, S_{A} and S_{g} to be singh bits. not harpoon to their resperiver files.

As stated, there is nothing to prevent Bob from giving Alice a wrong password S, possibly even in exchange for the correct secret S日. Nous Boo will read his filer white Alice, using $S \neq S B$, foll destroy hear file.

We assume that the correct passwords SB and SA are indelibly transcribed as prefixes to Alice's and Bot's file. Furthermore, Ales. Alice and Bob have a procedure to give each other signed messages (contracts), and can resort to ado subsequent adjudication to prove fraud.

Under these conditions Bot can, for example, give ad Alice a message" My secret is S, signed Bob". If Alice now uses the password S and $S \neq S B$ then
her fik, with the exception of the prefix containing $S B$, is destroyed and Alice can resort to adjudication with a provable case against Bof. \mathbb{P} The above mentioned message $\$$, hovevers, is does not provide a solution to the EOS probium. the signed message Alice can recieve , and read her file without giving $S A$ to Bof. When Bob goer to court, Alice can say:"I gave Boe the possword $S A$ and he has hot used it ${ }^{\text {² }}$; I am willing to reveal it again right nars". Even if Bof oftains SA
at the time of as adjudication, Alice has gained an advantage by having read her file well ahead of him.

With are the above assumptions the problem still seems to be unsolvable. Airy EOS protocol must have the form: Alice gives to Bop some information I_{1}, Bob gives to Alice J_{1}, Alice gives to Bobs I_{2}, etc. There must exist a first k such that, say, Bob can determine $S A$ from T_{1}, \ldots, I_{k}, sties while Alice cannot determine 58 from J_{1}, \ldots, J_{k-1}. Boo can withhoid J_{k}
from Alice and thus obtain SA without revealing SB.

The way out of this difficulty is to construct an EOS protocol such blat from the fact that Bol knows SA,

Alice can deduce 5B.
To render this feasable, we moke a final assumption that if Bob uses SA to read his file them Alice knows about this and vice-versa.

The general proser of the exchange of secrets, without the
particular setting and assumptions discussed above, was suggested to me by Richard De Mills.

The EOS Protocol. We assume that Alice has a public key K_{n} and sob has a public pay K_{B} which they can use for encription and for digital signatures. Every message sent by Alice to bob will be signed by her, using k_{Q}, and wien orson. similarly for Bob.

Alice chooses two large primes p, q and creates a onetime ky $n_{A}=p \cdot q$.

She then gives Bob a message:" The onetime key is $n_{\text {, }}$, signed Alice". Bob chooses primes p_{1}, q_{1} and gives $=p_{1} \cdot q_{1}$ Alice in a signed message.

Bob now chooses randomly an $x \leqslant n_{A}$, computes $c=x^{2} \bmod n_{A}$, and gives Alice the message" $E_{k_{B}}(x)$ is the encoding by try pontic key K_{B} of my chosen number and $\#$ is ton square mod n_{A} of that number, signed Bob".

Alice who knows the factors p, q of n_{n} calculates an x_{1} such that
$x_{1}^{2}=c \bmod x_{a} \cdot(5 e e$ [1]. for the square -root extraction algorithm and for the facts used in the next paragraphs.) Alice now gives Bob the message: " x_{1} is a square -root $\bmod n_{n}$ of c^{*}, signed slice".

Bob calculated the g.c.d $\left(x-x_{1}, n_{A}\right)=d$. With portability $1 / 2$ we have $[d=p$ or $d=q]$, so that with probability $1 / 2$ Bob now has the factorization $n_{A}=p \cdot g$. However, since Alice does not know Bob's x, she does not know whether Bob has the factorization of n_{A}.

We refer to this moke of transfering information, where the sunder does not know whether the recipe\%ient actually received the information, oblivious as an transfer.

Next Bob effects an oblivious of n_{B} to Alice.

Define

$$
\nu_{B}= \begin{cases}0 & \text { if }\left(x-x_{1}, n_{n}\right)=\operatorname{por} q \\ 1 & \text { otherwise }\end{cases}
$$

Thus $\nu_{B}=0$ Hf ii the above oblivious transfer of the factorization of n_{a} from Alice to Bot, he knows the factors. Pere st Alice's bit ν_{A} is defined
in a similar wring.
P Recall that $S A$ and S_{B} are exch a jingle bit.
Bot forms the exclusive-or $\varepsilon_{B}=S_{B} \oplus \mathcal{V}_{B}$
(Reader: $S_{B}=S B$!) and gives it to Alice in a signed message
" ε_{B} is the exclusive -or of may secret with
\rightarrow my state of knowledge of the factors of n_{A}, sign, rob." Knowledge of ε_{B} does not contribute anything to Alice's ability to access her file,

Similarly Alice forms $\varepsilon_{A}=S_{A} \oplus \nu_{A}$ and gives it to Bots in a signed message.

We come to the final round of the EOS protocol. Alice places thur secret $S_{A} a_{s}$
the center bit is an otherwise random message m_{A}. She then encodes m_{A} as $E_{n_{A}}\left(m_{a}\right)=1$ using ashy of the public -key systems which require the factors p, q of n_{a} for decoding. (We may, for example use the encoding $E_{n_{A}}\left(m_{A}\right)=$ m_{A}^{2} more n_{p} of $[1]$, provided that we ham a fixed smack prefix of m_{A} to distinguish m_{A} among the is square roots mod n_{A} of $E_{n_{A}}\left(m_{A}\right)$.) Heice sends $d_{A}=E_{n_{n}}\left(m_{A}\right)$ to Bob in a signed message.

Bob follows the same steps using S_{B} and n_{B} and sends the encoded result to alice

Theorem. The above protocol gives, under the assumptions in the Introduction, a solution of the Exchange of Secrets Problem. The probability that neither side will gain obtain the other's secret is $1 / 4$.

Proof. We omit the proof that the signed messages exchanged between Alice and Bob, and the indelible incorporation of $S_{\text {a }}$ and provide the each participant a s_{B} in the files, suffice-por side tar with a buna provable case against the other, if the other one cheated.

It is clear that if either Alice or Bol stop participation in the so r protocol (in which case the other one will also stop) before the final phase then neither can know the other's secret.

Asswins that Alice has given Bob, in the final phase, the encoded secret $\alpha_{A}=E_{n_{a}}\left(m_{i}\right)$ If Bole infarct kens the factorization $n_{A}=p \cdot q$, in which case $\nu_{B}=0$, he can decode d_{A}, find ${ }_{A}$ mm $_{A}$ and S_{A}. If Bot now uses the password (hit) $)^{S_{\text {a }}}$ to read his fill e then, by assumption, Alice will know this. Again by assumption Bob would atitemgit
reading his file only if he knows S_{n} with certainty (a mistake will destroy the file). Thus Alice knows that $\nu_{B}=0$ and hence that $\varepsilon_{B}=S_{B} \oplus \nu_{B}=S_{B}$ so that she knows S_{B}.

If Bobs gave Alice $d_{B}=E_{n_{B}}\left(m_{B}\right)$ in the final phage, then the above argument applies to ton yokel that if alice reads her file before Bob, then Bob will know s_{f}.

Thus i 4 either Alice or Bobs reads hear or his file, tin other arse will
know the password for his file.

The probability, when the protocol was completed, that neither one knows tUne other's secret is $(1 / 2)^{2}=1 / 4$.

Remarks. In chase that the exchange of secrets has not been effected, it is not possible to iterate the procedure. Recasts On c participant, say Alice, may actually know S_{g} after the first round but deliberate not access thur file until after the second round. Ene tray not prow whether ν_{n} pen was 0 in the first or second round
and then wile not be ale to read his five.

Remark z. The probability of success of the EOS protocol can be enhanced by modifying the oblivious transfer of information subprotocol. After receiving n_{A} from Alice, Bob chooses two numbers $x, y \leqslant h_{a}$ and gives the Alice the squares x^{2}, y^{2} mod x_{n}. Alice gives Bob $\lambda^{\text {two }}$ square roots x_{1}, y, mod n_{A} of x^{2} andy y^{2} respectively. Now Bot has a probability $3 / 4$ of knowing the factorization $n_{p}=p \cdot q$.

When Bot gives alice $\varepsilon_{B}=S_{B} \oplus \nu_{B}$, she knows that with probability $3 / 4, \varepsilon_{B}=S_{B} . I_{\text {we }}^{\sin c u}$ assumed that Alice is determined to guarantee still that her file will not be erased, it follows that she will not use ε_{B} as the password. Rather, as before, she will wait until she either can read S_{B} by decipturiny $E_{n_{B}}\left(m_{B}\right)$, or can infer $\nu_{B}=0$ from the fact that Bob has acessed his file.

The above double iteration of the oblivious transfer of information is also effected from Bob to Alice. The rest of the EOS protocol
is as before.

Each participant has now just a $1 / 4$ probability, of not knowing the factorization of the other's ane-time bey. Thus the probability of non-termination of the EOS protocol is $(1 / 4)^{2}=1 / 16$.

There is a limit beyond which the above enhancement cannot be carried. If, for example, the oblivious transfer subproticol is modifical so that $\operatorname{Pr}\left(\nu_{B}=0\right) \sim 1 / 32,000$ then $\operatorname{Pr}\left(\varepsilon_{B}=S_{B}\right)=1-1 / 32,000$. Now there is a real temptation for Alice to halt the protocol after receiving ε_{B}, and ustexge
ε_{B} as the password to her file.

Conclusion. Let us mention some problems for further research.

The oblivious transfer of information subprotocol is valid even without any of the assumptions we made in order to make EOS feasable. What other applications can one find for this subprotocol.

Com any of the assumption we made Ls relaxed or eliminated without lasing the possibility of EOS.

Is it possible to construct an EOS protocol which will alurays terminate, or can one prove that the non-zero probability of nom-termination is essential.

Bibliography

1. Rabin, M.0., Digital Signatures and Public ken Systems as Intractable as Factorization MIT LCS TM 1979:

How to Exchange Secrets with Oblivious Transfer

Michael O. Rabin

May 20, 1981

1 Introduction

Bob and Alice each have a secret, $S B$ and $S A$, respectively, which they wish to exchange. For example, $S B$ may be the password to a file that Alice wants to access (we shall refer to this file as Alice's file), and $S A$ the password to Bob's file. Can they set up a protocol to exchange the secrets without using a trusted third party and without a safe mechanism for the simultaneous exchange of messages?

To exclude the possibility of randomizing on the possible digits of the password, we assume that if an incorrect password is used then the file is erased, and that Bob and Alice want to guarantee that this will not happen to their respective files. Because of this assumption, we can take, without loss of generality, $S A$ and $S B$ to be single bits.

As stated, there is nothing to prevent Bob from giving Alice a wrong password S, possibly even in exchange for the correct secret $S A$. Now Bob will read his file, while Alice, using $S \neq S B$, will destroy her file.

We assume that the correct passwords $S B$ and $S A$ are indelibly transcribed as prefixes to Alice's and Bob's files. Furthermore, Alice and Bob have a procedure to give each other signed messages (contracts), and can resort to subsequent adjudication to prove fraud.

Under these conditions, Bob can, for example, give Alice a message "My secret is S, signed Bob". If Alice now uses the password S and $S \neq S B$, then her file, with the exception of the prefix containing $S B$, is destroyed and Alice can resort to adjudication with a provable case against Bob.

The above mentioned message, however, does not provide a solution to the EOS ${ }^{1}$ problem. Alice can receive the signed message, and read her file without giving $S A$ to Bob. When Bob goes to court, Alice can say: "I gave Bob the password $S A$ and he has not used it; I am willing to reveal it again right now." Even if Bob obtains $S A$ at the time of adjudication, Alice has gained an advantage by having read the file well ahead of him.

With all the above assumptions the problem still seems to be unsolvable. Any EOS protocol must have the form: Alice gives to Bob some information I_{1}, Bob gives to Alice J_{1}, Alice gives to Bob I_{2}, etc. There must exist a first k such that, say, Bob can determine $S A$ from I_{1}, \ldots, I_{k}, while Alice cannot determine $S B$ from J_{1}, \ldots, J_{k-1}. Bob can withhold J_{k} from Alice and thus obtain $S A$ without revealing $S B$.

The way out of this difficulty is to construct an EOS protocol such that, from the fact that Bob knows $S A$, Alice can deduce $S B$.

[^0]To render this feasible, we make a final assumption that if Bob uses $S A$ to read his file then Alice knows about this and vice versa.

The general problem of exchange of secrets, without the particular setting and assumptions discussed above, was suggested to me by Richard DeMillo.

2 The EOS Protocol

We assume that Alice has a public key K_{A} and Bob has a public key K_{B} which they can use for encryption and for digital signatures. Every message sent by Alice to Bob will be signed by her, using K_{A}, and similarly for Bob.

Alice chooses two large primes p, q and creates a one-time key $n_{A}=p \cdot q$. She then gives Bob a message:"The one-time key is n_{A}, signed Alice". Bob chooses primes p_{1}, q_{1} and gives $n_{B}=p_{1} \cdot q_{1}$ to Alice in a signed message.

Bob now chooses randomly an $x \leq n_{A}$, computes $c=x^{2} \bmod n_{A}$, and gives Alice the message " $E_{K_{B}}(x)$ is the encoding by my public key K_{B} of my chosen number, and c is the square $\bmod n_{A}$ of that number, signed Bob". ${ }^{2}$

Alice who knows the factors p, q of n_{A} calculates an x_{1} such that $x_{1}{ }^{2}=c \bmod n_{A}$. (See [1] for the square-root extraction algorithm and for the facts used in the next paragraphs.) Alice now gives Bob the message: " x_{1} is a square-root $\bmod n_{A}$ of c, signed Alice".

Bob calculates the g.c.d $\left(x-x_{1}, n_{A}\right)=d$. With probability $1 / 2$ we have $[d=p$ or $d=q]$, so that with probability $1 / 2$ Bob now has the factorization $n_{A}=p \cdot q$. However, since Alice does not know Bob's x, she does not know whether Bob has the factorization of n_{A}.

We refer to this mode of transferring information, where the sender does not know whether the recipient actually received the information, as an oblivious transfer.

Next Bob effects an oblivious transfer of n_{B} to Alice.
Define

$$
\nu_{B}= \begin{cases}0 & \text { if }\left(x-x_{1}, n_{A}\right)=p \text { or } q \\ 1 & \text { otherwise }\end{cases}
$$

Thus $\nu_{B}=0$ iff after the above oblivious transfer of the factorization of n_{A} from Alice to Bob, he knows the factors. Alice's bit ν_{A} is defined in a similar way.

Recall that $S A$ and $S B$ are each a single bit. Bob forms the exclusive-or $\varepsilon_{B}=S_{B} \oplus \nu_{B}$ (Reader: $S_{B}=S B!$), and gives it to Alice in a signed message " ε_{B} is the exclusive-or of my secret with my state of knowledge of the factors of n_{A}, signer, Bob." Knowledge of ε_{B} does not contribute anything to Alice's ability to access her file.

Similarly, Alice forms $\varepsilon_{A}=S_{A} \oplus \nu_{A}$ and gives it to Bob in a signed message.
We came to the final round of the EOS protocol. Alice places her secret S_{A} as the center bit in an otherwise random message m_{A}. She then encodes m_{A} as $E_{n_{A}}\left(m_{A}\right)=C$ using any of the public-key systems which require the factors p, q of n_{A} for decoding. (We may, for example use the encoding $E_{n_{A}}\left(m_{A}\right)=m_{A}{ }^{2} \bmod n_{A}$ of [1], provided that we have a fixed small prefix of m_{A}

[^1]to distinguish m_{A} among the 4 square roots $\bmod n_{A}$ of $E_{n_{A}}\left(m_{A}\right)$.). Alice sends $d_{A}=E_{n_{A}}\left(m_{A}\right)$ to Bob in a signed message.

Bob follows the same steps using S_{B} and n_{B} and sends the encoded result to Alice.
Theorem 1. The above protocol gives, under the assumptions in the Introduction, a solution of the Exchange of Secrets Problem. The probability that neither side will obtain the other's secret is $1 / 4$.

Proof. We omit the proof that the signed messages exchanged between Alice and Bob, and the indelible incorporation of S_{A} and S_{B} in the files, provide each participant with a provable case against the other, if the other one cheated.

It is clear that if either Alice or Bob stop participation in the EOS protocol before the final phase, in which case the other one will also stop, then neither can know the other's secret.

Assume that Alice has given Bob, in the final phase, the encoded secret $d_{A}=E_{n_{A}}\left(m_{A}\right)$. If Bob in fact knows the factorization $n_{A}=p \cdot q$, in which case $\nu_{B}=0$, he can decode d_{A}, finding m_{A} and S_{A}. If Bob now uses the password (bit) S_{A} to read his file, then, by assumption, Alice will know this. Again, by assumption, Bob would attempt reading his file only if he knows S_{A} with certainty (a mistake will destroy the file). Thus Alice knows that $\nu_{B}=0$ and hence that $\varepsilon_{B}=S_{B} \oplus \nu_{B}=S_{B}$ so that she knows S_{B}.

If Bob gave Alice $d_{B}=E_{n_{B}}\left(m_{B}\right)$ in the final phase, then the above argument applies to yield that if Alice reads her file before Bob, then Bob will know S_{A}.

Thus, if either Alice or Bob reads her or his file, the other one will know the password for his or her file.

The probability, when the protocol was completed, that neither one knows the other's secret is $(1 / 2)^{2}=1 / 4$.

Remark 1. In the case that the exchange of secrets has not been effected, it is not possible to iterate the procedure. One participant, say Alice, may actually know S_{B} after the first round but deliberately not access her file until after the second round. Bob may not know whether ν_{A} was 0 in the first or second round and then will not be able to read his file.

Remark 2. The probability of success of the EOS protocol can be enhanced by modifying the oblivious transfer of information subprotocol. After receiving n_{A} from Alice, Bob chooses two numbers $x, y \leq n_{A}$ and gives Alice the squares $x^{2}, y^{2} \bmod n_{A}$. Alice gives Bob two square roots $x_{1}, y_{1} \bmod n_{A}$ of x^{2} and y^{2} respectively. Now Bob has a probability 3/4 of knowing the factorization $n_{A}=p \cdot q$.

When Bob gives Alice $\varepsilon_{B}=S_{B} \oplus \nu_{B}$, she knows that with probability $3 / 4, \varepsilon_{B}=S_{B}$. Since we assume that Alice is determined to guarantee that her file will not be erase, it still follows that she will not use ε_{B} as the password. Rather, as before, she will wait until she either can read S_{B} by deciphering $E_{n_{B}}\left(m_{B}\right)$, or can infer $\nu_{B}=0$ from the fact that Bob has accessed his file.

The above double iteration of the oblivious transfer of information is also effected from Bob to Alice. The rest of the EOS protocol is as before.

Each participant has now just a 1/4 probability of not knowing the factorization of the other's one-time key. Thus the probability of non-termination of the EOS protocol is $(1 / 4)^{2}=1 / 16$.

There is a limit beyond which the above enhancement cannot be carried. If, for example, the oblivious transfer subprotocol is modified so that $\operatorname{Pr}\left[\nu_{B}=0\right] \sim 1 / 32,000$ then $\operatorname{Pr}\left[\varepsilon_{B}=S_{B}\right]=$
$1-1 / 32,000$. Now there is a real temptation for Alice to halt the protocol after receiving ε_{B}, and use ε_{B} as the password to her file.

3 Conclusion

Let us mention some problems for further research.
The oblivious transfer of information subprotocol is valid even without any of the assumptions we made in order to make EOS feasible. What other applications can one find for this subprotocol?

Can any of the assumptions we made be relaxed or eliminated without losing the possibility of EOS?

Is it possible to construct an EOS protocol which will always terminate, or can one prove that the non-zero probability of non-termination is essential?

Bibliography

[1] Michael O. Rabin. Digitalized Signatures and Public-Key Functions as Intractable as Factorization, MIT/LCS/TR-212, 1979.

[^0]: ${ }^{1}$ Footnote added during typesetting: Exchange of Secrets

[^1]: ${ }^{2}$ Footnote added during typesetting: Of course, Bob should use a semantically secure public-key cryptosystem for encrypting x under K_{B}.

