International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Paper: On Exponential Sums, Nowton identities and Dickson Polynomials over Finite Fields

Authors:
Xiwang Cao
Lei Hu
Download:
URL: http://eprint.iacr.org/2010/039
Search ePrint
Search Google
Abstract: Let $\mathbb{F}_{q}$ be a finite field, $\mathbb{F}_{q^s}$ be an extension of $\mathbb{F}_q$, let $f(x)\in \mathbb{F}_q[x]$ be a polynomial of degree $n$ with $\gcd(n,q)=1$. We present a recursive formula for evaluating the exponential sum $\sum_{c\in \mathbb{F}_{q^s}}\chi^{(s)}(f(x))$. Let $a$ and $b$ be two elements in $\mathbb{F}_q$ with $a\neq 0$, $u$ be a positive integer. We obtain an estimate of the exponential sum $\sum_{c\in \mathbb{F}^*_{q^s}}\chi^{(s)}(ac^u+bc^{-1})$, where $\chi^{(s)}$ is the lifting of an additive character $\chi$ of $\mathbb{F}_q$. Some properties of the sequences constructed from these exponential sums are provided also.
BibTeX
@misc{eprint-2010-22940,
  title={On Exponential Sums, Nowton identities and Dickson Polynomials over Finite Fields},
  booktitle={IACR Eprint archive},
  keywords={foundations /},
  url={http://eprint.iacr.org/2010/039},
  note={ xwcao@nuaa.edu.cn 14633 received 23 Jan 2010},
  author={Xiwang Cao and Lei Hu},
  year=2010
}