International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Paper: A Pipelined Karatsuba-Ofman Multiplier over GF($3^{97}$) Amenable for Pairing Computation

Authors:
Nidia Cortez-Duarte
Francisco Rodríguez-Henríquez
Jean-Luc Beuchat
Eiji Okamoto
Download:
URL: http://eprint.iacr.org/2008/127
Search ePrint
Search Google
Abstract: We present a subquadratic ternary field multiplier based on the combination of several variants of the Karatsuba-Ofman scheme recently published. Since one of the most relevant applications for this kind of multipliers is pairing computation, where several field multiplications need to be computed at once, we decided to design a $k$-stage pipeline structure for $k=1,\ldots,4$, where each stage is composed of a 49-trit polynomial multiplier unit. That architecture can compute an average of $k$ field multiplications every three clock cycles, which implies that our four-stage pipeline design can perform more than one field multiplication per clock cycle. When implemented in a Xilinx Virtex V XC5VLX330 FPGA device, this multiplier can compute one field multiplication over \gf($3^{97}$) in just $11.47$ns.
BibTeX
@misc{eprint-2008-17804,
  title={A Pipelined Karatsuba-Ofman Multiplier over GF($3^{97}$) Amenable for Pairing Computation},
  booktitle={IACR Eprint archive},
  keywords={implementation / Finite field arithmetic; Field Multipliers.},
  url={http://eprint.iacr.org/2008/127},
  note={ francisco@cs.cinvestav.mx 13959 received 20 Mar 2008},
  author={Nidia Cortez-Duarte and Francisco Rodríguez-Henríquez and Jean-Luc Beuchat and Eiji Okamoto},
  year=2008
}