International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Paper: Constructing new APN functions from known ones

Authors:
Lilya Budaghyan
Claude Carlet
Gregor Leander
Download:
URL: http://eprint.iacr.org/2007/063
Search ePrint
Search Google
Abstract: We present a method for constructing new quadratic APN functions from known ones. Applying this method to the Gold power functions we construct an APN function $x^3+\tr(x^9)$ over $\F_{2^n}$. It is proven that in general this function is CCZ-inequivalent to the Gold functions (and therefore EA-inequivalent to power functions), to the inverse and Dobbertin mappings, and in the case $n=7$ it is CCZ-inequivalent to all power mappings.
BibTeX
@misc{eprint-2007-13345,
  title={Constructing new APN functions from known ones},
  booktitle={IACR Eprint archive},
  keywords={Affine equivalence, Almost bent, Almost perfect nonlinear, CCZ-equivalence, Differential uniformity, Nonlinearity, S-box, Vectorial Boolean function},
  url={http://eprint.iacr.org/2007/063},
  note={submitted to FFA lilya@science.unitn.it 13656 received 19 Feb 2007, last revised 23 May 2007},
  author={Lilya Budaghyan and Claude Carlet and Gregor Leander},
  year=2007
}