International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Mehrdad Khatir

Publications

Year
Venue
Title
2008
EPRINT
Secure Adiabatic Logic: a Low-Energy DPA-Resistant Logic Style
Mehrdad Khatir Amir Moradi
The charge recovery logic families have been designed several years ago not in order to eliminate the side-channel leakage but to reduce the power consumption. However, in this article we present a new charge recovery logic style not only to gain high energy efficiency but also to achieve the resistance against side-channel attacks (SDA) especially against differential power analysis (DPA) attacks. Simulation results show a significant improvement in DPA-resistance level as well as in power consumption reduction in comparison with DPA-resistant logic styles proposed so far.
2008
EPRINT
Investigating the DPA-Resistance Property of Charge Recovery Logics
The threat of DPA attacks is of crucial importance when designing cryptographic hardware. As a result, several DPA countermeasures at the cell level have been proposed in the last years, but none of them offers perfect protection against DPA attacks. Moreover, all of these DPA-resistant logic styles increase the power consumption and the area consumption significantly. On the other hand, there are some logic styles which provide less power dissipation (so called charge recovery logic) that can be considered as a DPA countermeasure. In this article we examine them from the DPA-resistance point of view. As an example of charge recovery logic styles, 2N-2N2P is evaluated. It is shown that the usage of this logic style leads to an improvement of the DPA-resistance and at the same time reduces the energy consumption which make it especially suitable for pervasive devices. In fact, it is the first time that a proposed DPA-resistant logic style consumes less power than the corresponding standard CMOS circuit.