International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Sanggon Lee

Publications

Year
Venue
Title
2007
EPRINT
An Enhanced ID-based Deniable Authentication Protocol on Pairings
Deniability is defined as a privacy property which enables protocol principals to deny their involvement after they had taken part in a particular protocol run. Lately, Chou et al. had proposed their ID-based deniable authentication protocol after proving the vulnerability to Key-Compromise Impersonation (KCI) attack in Cao et al.'s protocol. In addition, they claimed that their protocol is not only secure, but also able to achieve both authenticity and deniability properties. However, in this paper, we demonstrate that Chou et al.'s protocol is not flawless as it remains insecure due to its susceptibility to the KCI attack. Based on this, we propose an enhanced scheme which will in fact preserves the authenticity, the deniability and the resistance against the KCI attack.
2007
EPRINT
An Enhanced One-round Pairing-based Tripartite Authenticated Key Agreement Protocol
A tripartite authenticated key agreement protocol is generally designed to accommodate the need of three specific entities in communicating over an open network with a shared secret key, which is used to preserve data confidentiality and integrity. Since Joux proposed the first pairing-based one-round tripartite key agreement protocol in 2000, numerous authenticated protocols have been proposed after then. However, most of them have turned out to be flawed due to their inability in achieving some desirable security attributes. In 2005, Lin-Li had identified the weaknesses of Shim's protocol and subsequently proposed their improved scheme by introducing an extra verification process. In this paper, we prove that Lin-Li's improved scheme remains insecure due to its susceptibility to the insider impersonation attack. Based on this, we propose an enhanced scheme which will not only conquer their defects, but also preserves the desired security attributes of a key agreement protocol.
2007
EPRINT
Secure Deniable Authenticated Key Establishment for Internet Protocols
In 2005, Boyd et al.'s deniable authenticated key establishment protocols for Internet Key Exchange (IKE) have been infiltrated by Chou et al. with the key-compromise impersonation (KCI) attack. In order to conquer their defects, we propose two protocol variants based on Boyd et al.'s deniable schemes for IKE in order to protect against the KCI attack and the man-in-the-middle (MITM) attack, while preserving the deniability and authenticity.
2007
EPRINT
An Improved One-Round ID-Based Tripartite Authenticated Key Agreement Protocol
Meng-Hui Lim Sanggon Lee
A tripartite authenticated key agreement protocol is generally designed to accommodate the need of three specific entities in communicating over an open network with a shared secret key, which is used to preserve confidentiality and data integrity. Since Joux initiates the development of tripartite key agreement protocol, many prominent tripartite schemes have been proposed subsequently. In 2005, Tso et al. have proposed an ID-based non-interactive tripartite key agreement scheme with k-resilience. Based on this scheme, they have further proposed another one-round tripartite application scheme. Although they claimed that both schemes are efficient and secure, we discover that both schemes are in fact breakable. In this paper, we impose several impersonation attacks on Tso et al.'s schemes in order to highlight their flaws. Subsequently, we propose an enhanced scheme which will not only conquer their defects, but also preserve the desired security attributes of a key agreement protocol.
2007
EPRINT
Cryptanalysis on Improved Chou et al.'s ID-Based Deniable Authentication Protocol
A deniable authentication protocol enables the protocol participants to authenticate their respective peers, while able to deny their participation after the protocol execution. This protocol can be extremely useful in some practical applications such as online negotiation, online shopping and electronic voting. Recently, we have improved a deniable authentication scheme proposed by Chou et al. due to its vulnerability to the key compromise impersonation attack in our previous report. However, we have later discovered that our previous enhanced protocol is vulnerable to the insider key compromise impersonation attack and key replicating attack. In this paper, we will again secure this protocol against these attacks and demonstrate its heuristic security analysis.
2007
EPRINT
Cryptanalysis on Improved One-round Lin-Li's Tripartite Key Agreement Protocol
A tripartite authenticated key agreement protocol is designed for three entities to communicate securely over an open network particularly with a shared key. Recently, we have improved a one-round tripartite authenticated key agreement protocol proposed by Lin-Li due to its vulnerability to the forging attack in our previous report. However, we have later discovered that both the original Lin-Li's scheme and our previous enhanced protocol are vulnerable to the insider replay attack. Moreover, we have also realized that both protocols have falsely claimed the forward secrecy attribute. In this paper, we will revise our improvements and again secure this protocol against these cryptanalytic attacks while recovering the precious perfect forward secrecy property.
2007
EPRINT
Cryptanalytic Flaws in Oh et al.'s ID-Based Authenticated Key Agreement Protocol
A key agreement protocol is designed for two or more entities to agree upon a shared secret key, which is used to preserve confidentiality and data integrity over an open network. In 2007, Oh et al. proposed an efficient ID-based authenticated key agreement protocol on elliptic curve pairings, which is believed to be able to generate two session keys securely after a protocol execution. However, we discover that their protocol is in fact susceptible to the basic impersonation attack as well as the key compromise impersonation attack. In this paper, we present the imperfections of Oh et al.'s scheme and subsequently we suggest a slight modification to the scheme which would resolve the problems.