Universal Composition with Responsive Environments

Jan Camenisch¹, Robert R. Enderlein¹, Stephan Krenn², Ralf Küsters³, <u>Daniel Rausch</u>³

¹ IBM Research Zurich - Switzerland
 ² AIT - Austria
 ³ University of Trier - Germany

Definition of simulatability (basic idea):

$$|\mathcal{P}| \leq |\mathcal{F}|$$

Definition of simulatability (basic idea):

7

Daniel Rausch AsiaCrypt 2016

Definition of simulatability (basic idea):

8

Assume:

$$|\mathcal{P}| \leq |\mathcal{F}|$$

e.g. ideal key exchange

$$|\mathcal{P}| \leq |\mathcal{F}|$$

Assume:

e.g. ideal key exchange

 $|\mathcal{P}| \leq |\mathcal{F}|$

Prove:

e.g. ideal key exchange

e.g., some real-world protocol SSL/TLS, SSH, ...

Prove:

e.g. ideal key exchange

e.g., some real-world protocol SSL/TLS, SSH, ...

Prove:

 \leq \mathcal{F}

e.g., some real-world protocol SSL/TLS, SSH, ...

Prove:

e.g. ideal secure channel \mathcal{F}'

e.g. ideal key exchange

e.g., some real-world protocol SSL/TLS, SSH, ...

Prove:

e.g. ideal secure channel

Composition Theorem

<

 $\overline{\mathcal{F}'}$

protocols

Models for Simulation-Based Security

- UC model [Canetti 2001]
- IITM model [Küsters 2006]
- GNUC model [Hofheinz, Shoup 2011]

• ...

* Urgent Requests

- * Urgent Requests
- * Non-Responsiveness Problem

- * Urgent Requests
- * Non-Responsiveness Problem

Our solution:

Responsive Environments

Protocols often have to exchange modeling related meta information with adversary:

Protocols often have to exchange modeling related meta information with adversary:

Ask for corruption status

Protocols often have to exchange modeling related meta information with adversary:

- Ask for corruption status
- Ask for cryptographic material (keys, algorithms,...)

Protocols often have to exchange modeling related meta information with adversary:

- Ask for corruption status
- Ask for cryptographic material (keys, algorithms,...)
- Leak information

Protocols often have to exchange modeling related meta information with adversary:

- Ask for corruption status
- Ask for cryptographic material (keys, algorithms,...)
- Leak information
- Signaling information
 ("new instance created")

Protocols often have to exchange modeling related meta information with adversary:

- Ask for corruption status
- Ask for cryptographic material (keys, algorithms,...)
- Leak information
- Signaling information
 ("new instance created")
- \Rightarrow Send a message m (urgent request)

Urgent requests do not model real network traffic

Urgent requests do not model real network traffic

⇒ Real adversary cannot use them to mount attacks

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

Activate protocol in unexpected way

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

Activate protocol in unexpected way

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

Activate protocol in unexpected way

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

Activate protocol in unexpected way

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state of other parts of the protocol

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state of other parts of the protocol

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state of other parts of the protocol

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state of other parts of the protocol

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state
 of other parts of the protocol

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state of other parts of the protocol
- Block parts of the protocol

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state of other parts of the protocol
- Block parts of the protocol

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state of other parts of the protocol
- Block parts of the protocol

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state of other parts of the protocol
- Block parts of the protocol

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Protocol designers have to deal with unintended adversarial behavior:

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Protocol designers have to deal with unintended adversarial behavior:

• Difficult

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Protocol designers have to deal with unintended adversarial behavior:

- Difficult
- Not always possible

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Protocol designers have to deal with unintended adversarial behavior:

- Difficult
- Not always possible
- Complex specifications and proofs

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Protocol designers have to deal with unintended adversarial behavior:

- Difficult
- Not always possible
- Complex specifications and proofs
- Often ignored in the literature

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Protocol designers have to deal with unintended adversarial behavior:

- Difficult
- Not always possible
- Complex specifications and proofs
- Often ignored in the literature
 - * Underspecified protocols

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Protocol designers have to deal with unintended adversarial behavior:

- Difficult
- Not always possible
- Complex specifications and proofs
- Often ignored in the literature
 - * Underspecified protocols
 - * Flawed proofs

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Protocol designers have to deal with unintended adversarial behavior:

- Difficult
- Not always possible
- Complex specifications and proofs
- Often ignored in the literature
 - * Underspecified protocols
 - * Flawed proofs
 - * Hard to reuse functionalities

 \mathcal{F}_{NIKE} from [Freire, Hesse, Hofheinz, 2014]

Upon input (init, P_i , P_j) from P_i [...] consider two cases:

- Corrupted session mode: if there exists $(\{P_i, P_j\}, K_{i,j})$ in Λ_{keys} , set $key = K_{i,j}$. Else, send (init, P_i, P_j) to the adversary. After receiving $(\{P_i, P_j\}, K_{i,j})$ from the adversary, set $key = K_{i,j}$ and add $(\{P_i, P_j\}, K_{i,j})$ to Λ_{keys} .
- Honest session mode: [...]

Return (P_i, P_j, key) to P_i .

 \mathcal{F}_{NIKE} from [Freire, Hesse, Hofheinz, 2014]

Upon input (init, P_i , P_j) from P_i [...] consider two cases:

- Corrupted session mode: if there exists $(\{P_i, P_j\}, K_{i,j})$ in Λ_{keys} , set $key = K_{i,j}$. Else, send (init, P_i, P_j) to the adversary. After receiving $(\{P_i, P_j\}, K_{i,j})$ from the adversary, set $key = K_{i,j}$ and add $(\{P_i, P_j\}, K_{i,j})$ to Λ_{keys} .
- Honest session mode: [...]

Return (P_i, P_j, key) to P_i .

Lack of expressivity:

Functionality meant to model *non-interactive* key exchange, but is actually interactive

 \mathcal{F}_{sok} from [Chase, Lysyanskaya, 2006]

Upon receiving a value (Setup, sid) from any party P, verify that $sid = (M_L, sid')$ for some sid'. If not, then ignore the request. Else, if this is the first time that (Setup, sid) was received, hand (Setup, sid) to the adversary; upon receiving (Algorithms, sid, Verify, Sign, Simsign, Extract) from the adversary, store these algorithms. Output the stored (Algorithms, sid, Sign, Verify) to P.

 \mathcal{F}_{sok} from [Chase, Lysyanskaya, 2006]

Upon receiving a value (Setup, sid) from any party P, verify that $sid = (M_L, sid')$ for some sid'. If not, then ignore the request. Else, if this is the first time that (Setup, sid) was received, hand (Setup, sid) to the adversary; upon receiving (Algorithms, sid, Verify, Sign, Simsign, Extract) from the adversary, store these algorithms. Output the stored (Algorithms, sid, Sign, Verify) to P.

Problems in proofs:

Functionality might not receive algorithms, which is problematic for realizations based on \mathcal{F}_{sok}

 $\mathcal{F}_{D\text{-Cert}}$ from [Zhao, Zhang, Qin, Feng, 2014]

```
Upon receiving a value (Verify, sid, m, \sigma) from some party S', hand (Verify, sid, m, \sigma) to the adversary. Upon receiving (Verified, sid, m, \phi) from the adversary, do: [...] Output (Verified, sid, m, f) to S'.
```

 $\mathcal{F}_{D\text{-Cert}}$ from [Zhao, Zhang, Qin, Feng, 2014]

```
Upon receiving a value (Verify, sid, m, \sigma) from some party S', hand (Verify, sid, m, \sigma) to the adversary. Upon receiving (Verified, sid, m, \phi) from the adversary, do: [...] Output (Verified, sid, m, f) to S'.
```

Unintended state changes and behavior:

Adversary can corrupt signer of a signature during verification ⇒ Possible to accept invalid signatures

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

```
Signature Protocol: When activated with input (Sign, sid, m), Party S does: [...] S sends (Sign, (U,s), m) to \mathcal{F}_{SIG}. Upon receiving (Signature, (U,s), m, \sigma) from \mathcal{F}_{SIG}, S outputs (Signature, sid, m, \sigma).
```

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

```
Signature Protocol: When activated with input (Sign, sid, m), Party S does:
[...]

S sends (Sign, (U, s), m) to \mathcal{F}_{SIG}. Upon receiving (Signature, (U, s), m, \sigma) from \mathcal{F}_{SIG}, S outputs (Signature, Sid, Signature, Sid, Sid,
```

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m),

Party S does:

[...]

S sends (Sign, (U, s), m) to \mathcal{F}_{SIG} . Upon receiving

(Signature, $(U, s), m, \sigma$) from \mathcal{F}_{SIG} , S outputs

(Signature, Sid, m, σ). \mathcal{F}_{SIG}

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

```
Signature Protocol: When activated with input (Sign, sid, m), Party S does: subroutine using urgent requests [...] S sends (Sign, (U, s), m) to \mathcal{F}_{SIG}. Upon receiving (Signature, (U, s), m, \sigma) from \mathcal{F}_{SIG}, S outputs (Signature, sid, m, \sigma).
```

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m), Party S does: subroutine using urgent requests [...] S sends (Sign, (U, s), m) to \mathcal{F}_{SIG} . Upon receiving (Signature, $(U, s), m, \sigma$) from \mathcal{F}_{SIG} , S outputs (Signature, Sid, m, σ).

Problem propagates to higher level protocols:

Adversary is activated when calling a subroutine which models a local task.

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m), Party S does: subroutine using urgent requests [...] S sends (Sign, (U,s), m) to \mathcal{F}_{SIG} . Upon receiving (Signature, (U,s), m, σ) from \mathcal{F}_{SIG} , S outputs (Signature, Sid, Signature, Sid, Sid, Signature, Sid, Sid,

Problem propagates to higher level protocols:

Adversary is activated when calling a subroutine which models a local task.

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m), Party S does: subroutine using urgent requests [...] S sends (Sign, (U,s), m) to \mathcal{F}_{SIG} . Upon receiving (Signature, (U,s), m, σ) from \mathcal{F}_{SIG} , S outputs (Signature, Sid, Signature, Sid, Sid,

Problem propagates to higher level protocols:

Adversary is activated when calling a subroutine which models a local task.

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m), Party S does: subroutine using urgent requests [...] S sends (Sign, (U, s), m) to \mathcal{F}_{SIG} . Upon receiving (Signature, $(U, s), m, \sigma$) from \mathcal{F}_{SIG} , S outputs (Signature, Sid, m, σ).

Problem propagates to higher level protocols:

Adversary is activated when calling a subroutine which models a local task.

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m), Party S does: subroutine using urgent requests [...] S sends (Sign, (U, s), m) to \mathcal{F}_{SIG} . Upon receiving (Signature, $(U, s), m, \sigma$) from \mathcal{F}_{SIG} , S outputs (Signature, Sid, Signature, Sid, S

Problem propagates to higher level protocols:

Adversary is activated when calling a subroutine which models a local task.

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m), Party S does: subroutine using urgent requests [...] S sends (Sign, (U, s), m) to \mathcal{F}_{SIG} . Upon receiving (Signature, (U, s), m, σ) from \mathcal{F}_{SIG} , S outputs (Signature, sid, m, σ).

Idealization cannot express properties of realization:

Unlike \mathcal{F}_{SIG} , realization \mathcal{P}_{SIG} is indeed local.

Problems from previous slides do not exist when using \mathcal{P}_{SIG} .

Dealing with the Non-Responsiveness Problem

Workarounds for full specifications:

Workarounds for full specifications:

Blocking requests while waiting for adversary

Workarounds for full specifications:

- Blocking requests while waiting for adversary
- Sending error messages while waiting for adversary

Workarounds for full specifications:

- Blocking requests while waiting for adversary
- Sending error messages while waiting for adversary
- Queuing new requests

Workarounds for full specifications:

- Blocking requests while waiting for adversary
- Sending error messages while waiting for adversary
- Queuing new requests
- Code upload constructs

Workarounds for full specifications:

- Blocking requests while waiting for adversary
- Sending error messages while waiting for adversary
- Queuing new requests
- Code upload constructs
- Resort to a default

Workarounds for full specifications:

- Blocking requests while waiting for adversary
- Sending error messages while waiting for adversary
- Queuing new requests
- Code upload constructs
- Resort to a default

However:

Not generally applicable

Workarounds for full specifications:

- Blocking requests while waiting for adversary
- Sending error messages while waiting for adversary
- Queuing new requests
- Code upload constructs
- Resort to a default

However:

- Not generally applicable
- Usually need tailor-made solutions

Workarounds for full specifications:

- Blocking requests while waiting for adversary
- Sending error messages while waiting for adversary
- Queuing new requests
- Code upload constructs
- Resort to a default

However:

- Not generally applicable
- Usually need tailor-made solutions
- Unnecessarily complicate specifications and proofs

Workarounds for full specifications:

- Blocking requests while waiting for adversary
- Sending error messages while waiting for adversary
- Queuing new requests
- Code upload constructs
- Resort to a default

However:

- Not generally applicable
- Usually need tailor-made solutions
- Unnecessarily complicate specifications and proofs

Also:

Does not address unintended state changes or limited expressivity

We introduce responsive environments and responsive adversaries

Non-Responsiveness Problem

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, adversary can:

- Activate protocol in unexpected way
- Activate and change state of other parts of the protocol
- Block parts of the protocol

Non-Responsiveness Problem

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, advantage can:

- Active rotocol in expected way
- Act Ite an hange sete
 of cer parts the tocol
- Block rts of the cocol

Non-Responsiveness Problem

Urgent requests do not model real network traffic

- ⇒ Real adversary cannot use them to mount attacks
- ⇒ Natural to expect adversary in model to answer immediately

Non-Responsiveness Problem

However, advantage can:

- Active rotocol in expected way
- Act Ite an hange sete
 of cer parts the tocol
- Block rts of the cocol

We introduce responsive environments and responsive adversaries

Natural solution,
 solves the problem entirely

We introduce responsive environments and responsive adversaries

- Natural solution,
 solves the problem entirely
- Simple, elegant, easy to use

We introduce responsive environments and responsive adversaries

- Natural solution,
 solves the problem entirely
- Simple, elegant, easy to use
- Solves problems from the literature

We introduce responsive environments and responsive adversaries

- Natural solution,
 solves the problem entirely
- Simple, elegant, easy to use
- Solves problems from the literature
- Applicable to all UC-style models (exemplified for UC, IITM, GNUC)

We introduce responsive environments and responsive adversaries

We provide detailed definitions and full proofs for the IITM model, including:

95 Daniel Rausch AsiaCrypt 2016

We introduce responsive environments and responsive adversaries

We provide detailed definitions and full proofs for the IITM model, including:

 Formal definitions of urgent requests, responsive environments, responsive adversaries

We introduce responsive environments and responsive adversaries

We provide detailed definitions and full proofs for the IITM model, including:

- Formal definitions of urgent requests, responsive environments, responsive adversaries
- Various security notions
 (dummy UC, strong simulatability, black-box simulatability, ...)

We introduce responsive environments and responsive adversaries

We provide detailed definitions and full proofs for the IITM model, including:

- Formal definitions of urgent requests, responsive environments, responsive adversaries
- Various security notions
 (dummy UC, strong simulatability, black-box simulatability, ...)
- Reflexivity and transitivity of security notions

We introduce responsive environments and responsive adversaries

We provide detailed definitions and full proofs for the IITM model, including:

- Formal definitions of urgent requests, responsive environments, responsive adversaries
- Various security notions (dummy UC, strong simulatability, black-box simulatability, ...)

- Reflexivity and transitivity of security notions
- Composition theorems

 $\mathcal{F}_{\text{NIKF}}$ from [Freire, Hesse, Hofheinz, 2014]

Upon input (init, P_i , P_j) from P_i [...] consider two cases:

- Corrupted session mode: if there exists $(\{P_i, P_j\}, K_{i,j})$ in Λ_{keys} , set $key = K_{i,j}$. Else, **send** (init, P_i, P_j) to the adversary. After receiving $(\{P_i, P_j\}, K_{i,j})$ from the adversary, set $key = K_{i,j}$ and add $(\{P_i, P_j\}, K_{i,j})$ to Λ_{keys} .
- Honest session mode: [...]

Return (P_i, P_j, key) to P_i .

 $\mathcal{F}_{\text{NIKF}}$ from [Freire, Hesse, Hofheinz, 2014]

Upon input (init, P_i , P_j) from P_i [...] consider two cases:

- Corrupted session mode: if there exists $(\{P_i, P_j\}, K_{i,j})$ in Λ_{keys} , set $key = K_{i,j}$. Else, **send** (Respond, init, P_i, P_j) to the adversary. After receiving $(\{P_i, P_j\}, K_{i,j})$ from the adversary, set $key = K_{i,j}$ and add $(\{P_i, P_j\}, K_{i,j})$ to Λ_{kevs} .
- Honest session mode: [...]

Return (P_i, P_j, key) to P_i .

 $\mathcal{F}_{\text{NIKF}}$ from [Freire, Hesse, Hofheinz, 2014]

Upon input (init, P_i , P_j) from P_i [...] consider two cases:

- Corrupted session mode: if there exists $(\{P_i, P_j\}, K_{i,j})$ in Λ_{keys} , set $key = K_{i,j}$. Else, **send** (Respond, init, P_i, P_j) to the adversary. After receiving $(\{P_i, P_j\}, K_{i,j})$ from the adversary, set $key = K_{i,j}$ and fdd $(\{P_i, P_j\}, K_{i,j})$ to Λ_{kevs} .
- Honest session mode: [...]

Return (P_i, P_j, key) to P_i .

immediate response

 $\mathcal{F}_{\mathsf{NIKE}}$ from [Freire, Hesse, Hofheinz, 2014]

Upon input (init, P_i , P_j) from P_i [...] consider two cases:

- Corrupted session mode: if there exists $(\{P_i, P_j\}, K_{i,j})$ in Λ_{keys} , set $key = K_{i,j}$. Else, **send** (Respond, init, P_i, P_j) to the adversary. After receiving $(\{P_i, P_j\}, K_{i,j})$ from the adversary, set $key = K_{i,j}$ and Add $(\{P_i, P_j\}, K_{i,j})$ to Λ_{keys} .
- Honest session mode: [...]

Return (P_i, P_j, key) to P_i .

immediate response

 \mathcal{F}_{sok} from [Chase, Lysyanskaya, 2006]

Upon receiving a value (Setup, sid) from any party P, verify that $sid = (M_L, sid')$ for some sid'. If not, then ignore the request. Else, if this is the first time that (Setup, sid) was received, hand (Respond, Setup, sid) to the adversary; **upon receiving** (Algorithms, sid, Verify, Sign, Simsign, Extract) from the adversary, store these algorithms. Output the stored (Algorithms, sid, Sign, Verify) to P.

 \mathcal{F}_{sok} from [Chase, Lysyanskaya, 2006]

Upon receiving a value (Setup, sid) from any party P, verify that $sid = (M_L, sid')$ for some sid'. If not, then ignore the request. Else, if this is the first time that (Setup, sid) was received, hand (Respond, Setup, sid) to the adversary; **upon receiving** (Algorithms, sid, Verify, Sign, Simsign, Extract) from the a versary, store these algorithms. Output the stored (Algorithms, \backslash Sign, Verify) to P.

immediate response

 \mathcal{F}_{sok} from [Chase, Lysyanskaya, 2006]

Upon receiving a value (Setup, sid) from any party P, verify that $sid = (M_L, sid')$ for some sid'. If not, then ignore the request. Else, if this is the first time that (Setup, sid) was received, hand (Respond, Setup, sid) to the adversary; upon receiving (Algorithms, sid, Verify, Sign, Simsign, Extract) from the a versary, store these algorithms. Output the stored (Algorithms, Sign, Verify) to P.

immediate response

 $\mathcal{F}_{D\text{-Cert}}$ from [Zhao, Zhang, Qin, Feng, 2014]

```
Upon receiving a value (Verify, sid, m, \sigma) from some party S', hand (Respond, Verify, sid, m, \sigma) to the adversary. Upon receiving (Verified, sid, m, \phi) from the adversary, do: [...] Output (Verified, sid, m, f) to S'.
```

 $\mathcal{F}_{D\text{-Cert}}$ from [Zhao, Zhang, Qin, Feng, 2014]

```
Upon receiving a value (Verify, sid, m, \sigma) from some party S',
hand (Respond, Verify, sid, m, \sigma) to the adversary. Upon
receiving (Verified, sid, m, \phi) from the adversary, do:
[\ldots]
Output '
           rified, sid, m, f) to S'.
```

immediate response

 $\mathcal{F}_{D\text{-Cert}}$ from [Zhao, Zhang, Qin, Feng, 2014]

```
Upon receiving a value (Verify, sid, m, \sigma) from some party S', hand (Respond, Verify, sid, m, \sigma) to the adversary. Upon receiving (Verified, sid, m, \phi) from the adversary, do: [...] Output rified, sid, m, f) to S'.
```

immediate response

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m), Party S does:

[...] S sends (Sign, (U,s), m) to \mathcal{F}_{SIG} . Upon receiving (Signature, (U,s), m, σ) from \mathcal{F}_{SIG} , S outputs (Signature, Sid, Signature, Sid, Sid, Signature, Sid, Sid

Realization of $\mathcal{F}_{D\text{-Cert}}$ from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m),

Party S does:

[...] S sends (Sign, (U,s), m) to \mathcal{F}_{SIG} . Upon receiving

(Signature, (U,s), m, σ) from \mathcal{F}_{SIG} , S to the signature, Sid, S

signature returned immediately

Realization of \mathcal{F}_{D-Cert} from [Zhao, Zhang, Qin, Feng, 2014]

Signature Protocol: When activated with input (Sign, sid, m),

Party S does:

 $[\ldots]$

S sends (Sign, (U, s), m) to \mathcal{F}_{SIG} . Upon receiving (Signature, $(U, s), m, \sigma$) from \mathcal{F}_{SIG} , S tputs (Signature, Sid, m, σ).

signature returned immediately

 Protocols often exchange meta information by what we call urgent requests

Daniel Rausch AsiaCrypt 2016

 Protocols often exchange meta information by what we call urgent requests

• Non-Responsiveness Problem:

Adversary might not answer immediately

 Protocols often exchange meta information by what we call urgent requests

Non-Responsiveness Problem:

Adversary might not answer immediately

* Complicates protocol specifications and security proofs

- Protocols often exchange meta information by what we call urgent requests
- Non-Responsiveness Problem:
 - Adversary might not answer immediately
 - * Complicates protocol specifications and security proofs
 - * No simple, general solution for adjusting protocols

- Protocols often exchange meta information by what we call urgent requests
- Non-Responsiveness Problem:
 - Adversary might not answer immediately
 - * Complicates protocol specifications and security proofs
 - * No simple, general solution for adjusting protocols
 - * Limited expressiveness

 Protocols often exchange meta information by what we call urgent requests

- Non-Responsiveness Problem:
 - Adversary might not answer immediately
 - * Complicates protocol specifications and security proofs
 - * No simple, general solution for adjusting protocols
 - * Limited expressiveness
 - * Often ignored in the literature

- Protocols often exchange meta information by what we call urgent requests
- Non-Responsiveness Problem:
 - Adversary might not answer immediately
 - * Complicates protocol specifications and security proofs
 - * No simple, general solution for adjusting protocols
 - * Limited expressiveness
 - * Often ignored in the literature
 - Underspecified protocols
 - Flawed proofs
 - Hard to reuse functionalities

• Our solution: Responsive environments/adversaries

Easy to use, gets rid of the problem entirely, fixes literature

 Our solution: Responsive environments/adversaries Easy to use, gets rid of the problem entirely, fixes literature

Use our framework!

It makes your life much easier!

• Our solution: Responsive environments/adversaries

Easy to use, gets rid of the problem entirely, fixes literature

Use our framework!

It makes your life much easier!

Thanks for your attention!