
Linear Structures: Applications to

Cryptanalysis of Round-Reduced Keccak

Meicheng Liu
joint work with Jian Guo and Ling Song

Asiacrypt 2016

1/28



Outline

Introduction
SHA-3 hash function

Linear Structures
Linear structures of Keccak-f permutation
Techniques for keeping 1 + 1 rounds being linear
Techniques for keeping 1 + 2 rounds being linear

Distinguishers
Zero-sum distinguishers on Keccak-f

Preimage Attacks
Preimage Attacks on Keccak
Setting up linear equations from the output of χ
Keccak Crunchy Crypto Contest

2/28



Cryptographic hash function

I A cryptographic hash function is a mathematical algorithm
that maps data of arbitrary size to a bit string of a fixed size,
which is designed to also be one-way function.

I Properties
I Collision resistance

- It should be difficult to find a pair of different messages m1

and m2 such that H(m1) = H(m2).
I Preimage resistance

- Given an arbitrary n-bit value x , it should be difficult to find
any message m such that H(m) = x .

I Second preimage resistance

- Given message m1, it should be difficult to find any different
message m2 such that H(m1) = H(m2).

3/28



SHA-3 hash function

I NIST SHA-3 hash function competition (2007–2012)

I Winner: Keccak
I The winner was announced to be Keccak in October 2012.
I Designers: Guido Bertoni, Joan Daemen, Michaël Peeters,

and Gilles Van Assche
Official versions: Keccak-224/256/384/512
The Keccak web site: http://keccak.noekeon.org/

I In August 2015 NIST announced that SHA-3 had become a
hashing standard.

I SHA3-224/256/384/512
I SHAKE128/256 (eXtendable Output Functions, XOFs)

4/28

http://keccak.noekeon.org/


Michaël Peeters, Guido Bertoni, Gilles Van Assche and Joan Daemen

The Keccak Team

5/28



Specifications of Keccak
I Structure of Keccak

I Sponge construction

I Keccak-f permutation
I 1600 bits: a 5× 5 array of 64-bit lanes
I 24 rounds
I each round consists of five steps:

ι ◦ χ ◦ π ◦ ρ ◦ θ

I χ : the only nonlinear operation

6/28



SHA-3 hash function
Federal Information Processing Standards (FIPS) 202 instances

Instances r c
Output
Length

Collision
Resistance

Preimage
Resistance

SHA3-224 1152 448 224 112 224
SHA3-256 1088 512 256 128 256
SHA3-384 832 768 384 192 384
SHA3-512 576 1024 512 256 512
SHAKE128 1344 256 ` min(`/2, 128) min(`, 128)
SHAKE256 1088 512 ` min(`/2, 256) min(`, 256)

Table: The standard FIPS 202 instances

7/28



Linear structures of Keccak-f permutation

I Several known attacks are based on the technique of
linearizing 1-round Keccak-f

I Zero-sum distinguishers [AM09]
I Cube-attack-like cryptanalysis on keyed variants of Keccak

[DMP+15]

I We find that 2- and 3-round Keccak-f can be linearized

| 1←−−−−−
backward

| 1−−−−→
forward

| dim ≤ 512

| 1←−−−−−
backward

| 2−−−−→
forward

| dim ≤ 194

I To mount preimage attacks, we often use

| 1←−−−−−
backward

| 1−−−−→
forward

| dim = 512

8/28



Specifications of Keccak
I Structure of Keccak

I Sponge construction

I Keccak-f permutation
I 1600 bits: a 5× 5 array of 64-bit lanes
I 24 rounds
I each round consists of five steps:

ι ◦ χ ◦ π ◦ ρ ◦ θ

I χ : the only nonlinear operation

9/28



Keccak-f permutation

Internal state A: a 5× 5 array of 64-bit lanes

θ C [x ] = A[x , 0]⊕ A[x , 1]⊕ A[x , 2]⊕ A[x , 3]⊕ A[x , 4]
D[x ] = C [x − 1]⊕ (C [x + 1] ≪ 1)
A[x , y ] = A[x , y ]⊕ D[x ]

ρ A[x , y ] = A[x , y ] ≪ r [x , y ]

π B[y , 2 ∗ x + 3 ∗ y ] = A[x , y ]

χ A[x , y ] = B[x , y ]⊕ ((∼ B[x + 1, y ])&B[x + 2, y ])

ι A[0, 0] = A[0, 0]⊕ RC

- The constants r [x , y ] are the rotation offsets.
- RC[i] are the round constants.

- The only non-linear operation is χ step - algebraic degree 2

10/28



Techniques for keeping 1 + 1 rounds being linear
with the degrees of freedom up to 512

I Keeping one round forward being linear

0, 4

0, 3

0, 2

0, 1

0, 0

1, 4

1, 3

1, 2

1, 1

1, 0

2, 4

2, 3

2, 2

2, 1

2, 0

3, 4

3, 3

3, 2

3, 1

3, 0

4, 4

4, 3

4, 2

4, 1

4, 0

θ

0, 4

0, 3

0, 2

0, 1

0, 0

1, 4

1, 3

1, 2

1, 1

1, 0

2, 4

2, 3

2, 2

2, 1

2, 0

3, 4

3, 3

3, 2

3, 1

3, 0

4, 4

4, 3

4, 2

4, 1

4, 0

π ◦ ρ

0, 0

3, 0

1, 0

4, 0

2, 0

1, 1

4, 1

2, 1

0, 1

3, 1

2, 2

0, 2

3, 2

1, 2

4, 2

3, 3

1, 3

4, 3

2, 3

0, 3

4, 4

2, 4

0, 4

3, 4

1, 4

ι ◦ χ

0, 0

3, 0

1, 0

4, 0

2, 0

1, 1

4, 1

2, 1

0, 1

3, 1

2, 2

0, 2

3, 2

1, 2

4, 2

3, 3

1, 3

4, 3

2, 3

0, 3

4, 4

2, 4

0, 4

3, 4

1, 4

Figure: Keeping one round forward being linear with the degrees
of freedom up to 512, with yellow bits of degree 1, orange bits of
degree at most 1, and the other bits being constants.

I Keeping one round backward being linear
I linearizing the inverse of χ according to its property: restrict

the bits of gray lanes to be all ones and the bits of lightgray
lanes to be all zeros

11/28



Linearizing the inverse of χ
The inverse χ−1 : b 7→ a has algebraic degree 3, and

ai = bi ⊕ (bi+1 ⊕ 1) · (bi+2 ⊕ (bi+3 ⊕ 1) · bi+4) (1)

where 0 ≤ i ≤ 4 and the indexes are operated on modulo 5.
If we impose b3 = 0 and b4 = 1, then we have

a0 = b0 ⊕ (b1 ⊕ 1) · (b2 ⊕ 1),

a1 = b1,

a2 = 1⊕ b2 ⊕ (b0 ⊕ 1) · b1,
a3 = 0,

a4 = 1⊕ (b0 ⊕ 1) · b1,

and thus all ai ’s are linear on b0 and b2.
That’s, for b3 = 0, b4 = 1 and any fixed b1, the algebraic
degree of χ−1 becomes 1.

12/28



Techniques for keeping 1 + 2 rounds being linear
with the degrees of freedom up to 194

I Keeping two rounds forward being linear

0, 4

0, 3

0, 2

0, 1

0, 0

1, 4

1, 3

1, 2

1, 1

1, 0

2, 4

2, 3

2, 2

2, 1

2, 0

3, 4

3, 3

3, 2

3, 1

3, 0

4, 4

4, 3

4, 2

4, 1

4, 0

θ

0, 4

0, 3

0, 2

0, 1

0, 0

1, 4

1, 3

1, 2

1, 1

1, 0

2, 4

2, 3

2, 2

2, 1

2, 0

3, 4

3, 3

3, 2

3, 1

3, 0

4, 4

4, 3

4, 2

4, 1

4, 0

π ◦ ρ

0, 0

3, 0

1, 0

4, 0

2, 0

1, 1

4, 1

2, 1

0, 1

3, 1

2, 2

0, 2

3, 2

1, 2

4, 2

3, 3

1, 3

4, 3

2, 3

0, 3

4, 4

2, 4

0, 4

3, 4

1, 4

ι ◦ χ

0, 0

3, 0

1, 0

4, 0

2, 0

1, 1

4, 1

2, 1

0, 1

3, 1

2, 2

0, 2

3, 2

1, 2

4, 2

3, 3

1, 3

4, 3

2, 3

0, 3

4, 4

2, 4

0, 4

3, 4

1, 4

θ

0, 0

3, 0

1, 0

4, 0

2, 0

1, 1

4, 1

2, 1

0, 1

3, 1

2, 2

0, 2

3, 2

1, 2

4, 2

3, 3

1, 3

4, 3

2, 3

0, 3

4, 4

2, 4

0, 4

3, 4

1, 4

π ◦ ρ

0, 0

3, 3

1, 1

4, 4

2, 2

4, 1

2, 4

0, 2

3, 0

1, 3

3, 2

1, 0

4, 3

2, 1

0, 4

2, 3

0, 1

3, 4

1, 2

4, 0

1, 4

4, 2

2, 0

0, 3

3, 1

ι ◦ χ

I Keeping one round backward being linear

13/28



Zero-sum distinguishers on Keccak-f
Exploiting the linear structures of Keccak-f

What’s a zero-sum distinguisher?
I Find a set S such that

∑
x∈S x = 0 and

∑
x∈S f (x) = 0.

I Known zero-sum distinguisher on Keccak-f permutation

| m←−−−−−
backward

| 1+n−−−−→
forward

| or | m+1←−−−−−
backward

| n−−−−→
forward

|

I Our improved zero-sum distinguisher on Keccak-f
permutation

| m+1←−−−−−
backward

| 1+n−−−−→
forward

|

| m+1←−−−−−
backward

| 2+n−−−−→
forward

|

I Complexity: 21+max(2n,3m)

- Since deg(χ) = 2 and deg(χ−1) = 3, the algebraic degree of
n forward Keccak-f rounds is bounded by 2n, and m
backward rounds by 3m.

14/28



Zero-sum distinguishers on Keccak-f
Exploiting the linear structures of Keccak-f

What’s a zero-sum distinguisher?
I Find a set S such that

∑
x∈S x = 0 and

∑
x∈S f (x) = 0.

I Known zero-sum distinguisher on Keccak-f permutation

| m←−−−−−
backward

| 1+n−−−−→
forward

| or | m+1←−−−−−
backward

| n−−−−→
forward

|

I Our improved zero-sum distinguisher on Keccak-f
permutation

| m+1←−−−−−
backward

| 1+n−−−−→
forward

|

| m+1←−−−−−
backward

| 2+n−−−−→
forward

|

I Complexity: 21+max(2n,3m)

- Since deg(χ) = 2 and deg(χ−1) = 3, the algebraic degree of
n forward Keccak-f rounds is bounded by 2n, and m
backward rounds by 3m.

14/28



Zero-sum distinguishers on Keccak-f
Exploiting the linear structures of Keccak-f

I Extend the previous zero-sum distinguishers by 2 rounds
without increasing the complexities

#R inv+forw Best Known inv+forw Improved inv+forw Further
7 3+4 213

[JN15] 3+4 210 2+5 29

8 3+5 218
[AM09, JN15] 3+5 217 3+5 210

9 4+5 233∗
[AM09] 4+5 228 3+6 217

10 4+6 265∗
[AM09] 4+6 233 4+6 228

11 5+6 282∗
[AM09] 4+7 265 4+7 233

12 5+7 2129
[AM09] 5+7 282 4+8 265

13 6+7 2244
[AM09] 5+8 2129 5+8 282

14 6+8 2257
[AM09] 6+8 2244 5+9 2129

15 6+9 2513
[AM09] 6+9 2257

24 12+12 21575
[BCC11, DL11]

∗Corrected.
15/28



Zero-sum distinguishers on Keccak-f
Exploiting the linear structures of Keccak-f

- Practical distinguisher for 11 rounds

∗ The 12-round Keccak-f permutations can be distinguished
with complexity 265 or 282.

I This is of special interests since the 12-round Keccak-f
permutation variants are used in the CAESAR candidates
Keyak and Ketje.

I Nevertheless, we stress here that this distinguisher does not
affect the security of Keyak or Ketje.

16/28



Preimage Attacks: An Example on SHAKE128

1. linearize two rounds with one round forward and one round
backward, and obtain 512 variables such that the first two
rounds are linear

| 1←−−−−−
backward

| 1−−−−→
forward

|

2. to make sure that the state input to the first round
corresponds to a legal message, we set up 262 linear
equations (256 bits for capacity and 6 bits for padding)

17/28



Preimage Attacks: An Example on SHAKE128

1. linearize two rounds with one round forward and one round
backward, and obtain 512 variables such that the first two
rounds are linear

| 1←−−−−−
backward

| 1−−−−→
forward

|

2. to make sure that the state input to the first round
corresponds to a legal message, we set up 262 linear
equations (256 bits for capacity and 6 bits for padding)

17/28



Preimage Attacks: An Example on SHAKE128

1. linearize two rounds with one round forward and one round
backward, and obtain 512 variables such that the first two
rounds are linear

| 1←−−−−−
backward

| 1−−−−→
forward

|

2. to make sure that the state input to the first round
corresponds to a legal message, we set up 262 linear
equations (256 bits for capacity and 6 bits for padding)

After the above two steps, there remains 250 free variables such
that the bits input to step χ of the third round are all linear.

17/28



Preimage Attacks: An Example on SHAKE128

1. linearize two rounds with one round forward and one round
backward, and obtain 512 variables such that the first two
rounds are linear

| 1←−−−−−
backward

| 1−−−−→
forward

|

2. to make sure that the state input to the first round
corresponds to a legal message, we set up 262 linear
equations (256 bits for capacity and 6 bits for padding)

After the above two steps, there remains 250 free variables such
that the bits input to step χ of the third round are all linear.

I Preimage attacks on SHAKE128 with output length 128
I 3 rounds: set up linear equations by exploiting bilinear

structure of χ and guessing some bits input to χ

I 4 rounds: partially linearize the third round, and set up linear
equations by bilinear structure of χ

17/28



Preimage Attacks: An Example on SHAKE128

1. linearize two rounds with one round forward and one round
backward, and obtain 512 variables such that the first two
rounds are linear

| 1←−−−−−
backward

| 1−−−−→
forward

|

2. to make sure that the state input to the first round
corresponds to a legal message, we set up 262 linear
equations (256 bits for capacity and 6 bits for padding)

After the above two steps, there remains 250 free variables such
that the bits input to step χ of the third round are all linear.

I Preimage attacks on SHAKE128 with output length 128
I 3 rounds: set up linear equations by exploiting bilinear

structure of χ and guessing some bits input to χ
I 4 rounds: partially linearize the third round, and set up linear

equations by bilinear structure of χ

17/28



Setting up linear equations from the output of χ
Bilinear structure of χ

The algebraic normal form of χ mapping 5-bit a into 5-bit b can
be written as bi = ai ⊕ (ai+1 ⊕ 1) · ai+2, and specially we have

b0 = a0 ⊕ (a1 ⊕ 1) · a2 (2)

b1 = a1 ⊕ (a2 ⊕ 1) · a3 (3)

Given two consecutive bits of the output of χ, one linear equation
on the input bits can be set up. By (3), we have

b1 · a2 = (a1 ⊕ (a2 ⊕ 1) · a3) · a2 = a1 · a2 (4)

and thus according to (2) we obtain

b0 = a0 ⊕ (b1 ⊕ 1) · a2. (5)

Given three consecutive bits of the output of χ, to say b0, b1 and
b2, an additional linear equation can be similarly set up:

b1 = a1 ⊕ (b2 ⊕ 1) · a3. (6)

18/28



Setting up linear equations from the output of χ
Bilinear structure of χ

The input a and output b of 5-bit Sbox χ satisfy F (a, b) = 0 with

Fi(a, b) = bi+1 · ai+2 + ai + ai+2 + bi , 0 ≤ i ≤ 4.

Table: Number of Linear Equations on Input Bits Obtained from the
Output of 5-bit Sbox χ

#Known consecutive output bits 2 3 4 5
#Linear equations on input bits 1 2 4 5

19/28



Setting up more linear equations

1. The first method is to guess the value of an input bit.
I guess the value of input bit a1
I obtain the linear equation b0 = a0 ⊕ (a1 ⊕ 1) · a2

2. The second method is to make use of the probabilistic
equation bi = ai with probability 0.75.

20/28



Preimage Attacks: An Example on SHAKE128
I for 3-round SHAKE128, given a 128-bit hash value h:

I we set up 64 linear equations on the 250 free variables (the
first two output bits b0 and b1 of 64 Sboxes are known)

b0 = a0 ⊕ (b1 ⊕ 1) · a2

I set up extra 2× 64 linear equations by guessing 64 bits input
to step χ of the third round

a2 = c

b1 = a1 ⊕ (c ⊕ 1) · a3

I obtain a linear system of 192 equations on 250 variables, and
each solution corresponds to a preimage of h

- the time complexity of this attack is 1

I similar techniques help us solve two 3-round preimage
challenges in Keccak Crunchy Crypto Contest

21/28



Preimage Attacks: An Example on SHAKE128
I for 3-round SHAKE128, given a 128-bit hash value h:

I we set up 64 linear equations on the 250 free variables (the
first two output bits b0 and b1 of 64 Sboxes are known)

b0 = a0 ⊕ (b1 ⊕ 1) · a2

I set up extra 2× 64 linear equations by guessing 64 bits input
to step χ of the third round

a2 = c

b1 = a1 ⊕ (c ⊕ 1) · a3

I obtain a linear system of 192 equations on 250 variables, and
each solution corresponds to a preimage of h

- the time complexity of this attack is 1

I similar techniques help us solve two 3-round preimage
challenges in Keccak Crunchy Crypto Contest

21/28



Preimage Attacks: An Example on SHAKE128
I for 3-round SHAKE128, given a 128-bit hash value h:

I we set up 64 linear equations on the 250 free variables (the
first two output bits b0 and b1 of 64 Sboxes are known)

b0 = a0 ⊕ (b1 ⊕ 1) · a2

I set up extra 2× 64 linear equations by guessing 64 bits input
to step χ of the third round

a2 = c

b1 = a1 ⊕ (c ⊕ 1) · a3

I obtain a linear system of 192 equations on 250 variables, and
each solution corresponds to a preimage of h

- the time complexity of this attack is 1

I similar techniques help us solve two 3-round preimage
challenges in Keccak Crunchy Crypto Contest

21/28



Preimage Attacks: An Example on SHAKE128
I for 3-round SHAKE128, given a 128-bit hash value h:

I we set up 64 linear equations on the 250 free variables (the
first two output bits b0 and b1 of 64 Sboxes are known)

b0 = a0 ⊕ (b1 ⊕ 1) · a2

I set up extra 2× 64 linear equations by guessing 64 bits input
to step χ of the third round

a2 = c

b1 = a1 ⊕ (c ⊕ 1) · a3

I obtain a linear system of 192 equations on 250 variables, and
each solution corresponds to a preimage of h

- the time complexity of this attack is 1

I similar techniques help us solve two 3-round preimage
challenges in Keccak Crunchy Crypto Contest

21/28



Preimage Attacks: An Example on SHAKE128
I for 3-round SHAKE128, given a 128-bit hash value h:

I we set up 64 linear equations on the 250 free variables (the
first two output bits b0 and b1 of 64 Sboxes are known)

b0 = a0 ⊕ (b1 ⊕ 1) · a2

I set up extra 2× 64 linear equations by guessing 64 bits input
to step χ of the third round

a2 = c

b1 = a1 ⊕ (c ⊕ 1) · a3

I obtain a linear system of 192 equations on 250 variables, and
each solution corresponds to a preimage of h

- the time complexity of this attack is 1

I similar techniques help us solve two 3-round preimage
challenges in Keccak Crunchy Crypto Contest

21/28



Preimage Attacks: An Example on SHAKE128
I for 3-round SHAKE128, given a 128-bit hash value h:

I we set up 64 linear equations on the 250 free variables (the
first two output bits b0 and b1 of 64 Sboxes are known)

b0 = a0 ⊕ (b1 ⊕ 1) · a2

I set up extra 2× 64 linear equations by guessing 64 bits input
to step χ of the third round

a2 = c

b1 = a1 ⊕ (c ⊕ 1) · a3

I obtain a linear system of 192 equations on 250 variables, and
each solution corresponds to a preimage of h

- the time complexity of this attack is 1

I similar techniques help us solve two 3-round preimage
challenges in Keccak Crunchy Crypto Contest

21/28



Preimage attacks on Keccak
Exploiting the linear structures of Keccak-f and bilinear structure of χ

#Rounds Variant Time Reference

2 Keccak-224/256 233 [Naya-PlasenciaRM11]
2 Keccak-224/256 1 Our results
2 Keccak-384/512 2129/2384 Our results

3 Keccak[1440, 160, 80] 1 Our results
3 Keccak[640, 160, 80] 27 Our results
3 SHAKE128 1 Our results
3 Keccak-224/256/384 297/2192/2322 Our results
3 Keccak-512 2482 Our results
3 Keccak-512 2506 [MorawieckiPS13]

4 Keccak[1440, 160, 80] 254 Our results
4 SHAKE128 2106 Our results
4 Keccak-224/256 2213/2251 Our results
4 Keccak-224/256 2221/2252 [MorawieckiPS13]
4 Keccak-384/512 2378/2506 [MorawieckiPS13]

22/28



Keccak Crunchy Crypto Contest

Keccak team presents challenges for reduced-round Keccak
instances, namely Keccak[c = 160, r = b − c] with b ≥ 200:

I The capacity is fixed to 160 bits: this implies a security level
of 280 against generic collision search.

I The width b of Keccak-f [b] is in {200, 400, 800, 1600}: the
width values that support the chosen capacity.

I The number of rounds nr ranges from 1 to 12.

For each of these Keccak instances there are two challenges:
I generating a collision in the output truncated to 160 bits;
I generating a preimage of an output truncated to 80 bits.

F The prize for a challenge for nr rounds is nr × 10 e.

23/28



Keccak Crunchy Crypto Contest
A solution for 3-round preimage challenge of width 1600

Challenge: 06 25 a3 46 28 c0 cf e7 6c 75

24/28



Keccak Crunchy Crypto Contest
A solution for 3-round preimage challenge of width 1600

Challenge: 06 25 a3 46 28 c0 cf e7 6c 75

Preimage:
01e0bc766796d36f ffffffffffffffff bd25fc21a299814e 0000000000000000 0000000000000000

cc85265f6f0e696a ffffffffffffffff 3a6f339c0eb075b9 0000000000000000 0000000000000000

d22ac7903b459dc2 ffffffffffffffff 903a19e9986a2ac7 0000000000000000 0000000000000000

539674b5f5e23187 ffffffffffffffff 1770d654e35ec89e 0000000000000000 0000000000000000

b326d6f339c0e9bf ffffffffffffffff d71d16ae

24/28



Keccak Crunchy Crypto Contest
A solution for 3-round preimage challenge of width 800

Challenge: 00 7b b5 c5 99 80 66 0e 02 93

25/28



Keccak Crunchy Crypto Contest
A solution for 3-round preimage challenge of width 800

Challenge: 00 7b b5 c5 99 80 66 0e 02 93

Preimage:
ffffffff1097e68a 069e5c9097c2a342 9128124400000000 3bc3a3a300000000 0000000000000000

0000000056ace9cb 00000000cb56ace9 2ba3ccb200000000 990fc4d300000000 ff2c346d00000000

25/28



Keccak Crunchy Crypto Contest
A partially matched solution for 4-round preimage challenge of width 1600

Challenge: 7d aa d8 07 f8 50 6c 9c 02 76

26/28



Keccak Crunchy Crypto Contest
A partially matched solution for 4-round preimage challenge of width 1600

Challenge: 7d aa d8 07 f8 50 6c 9c 02 76

Output: 7d aa d8 07 b0 50 6c 9c 02 76

Message:
bc739847dd59b8f6 21e6f9016ae9292d 44c2f9f008f175fc fb1a9d7d2f5af0d9 c709f78dfa830460

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 00000000

34d781770fae25d9 4bcdf7304704b1a0 aeb1cc6a3d9a4b9f 879b5b095e744910 09096232b744ac44

63faab93d1b6a3f5 7aca93b5c0c2afa0 f1b2772194934266 41e5a573d5efc16f 34e0e077bfb4ce43

48bb5cb11aa15738 3ecb466e4aa6fec3 4e3e5449626d5e2d ccec6be24c92d63b fb652d66cc6a4621

356d6bfdd56b1afb d9da9b8c0e366cd3 034ad6fdd9caa885 236ade6960c8edaf 03d6d60e45aeb00e

b8132036d4e20f33 8e4a29bbbd2c1cb8 8549b303

26/28



Keccak Crunchy Crypto Contest
A partially matched solution for 4-round preimage challenge of width 1600

Challenge: 7d aa d8 07 f8 50 6c 9c 02 76

Output: 7d aa d8 07 b0 50 6c 9c 02 76

Difference: -- -- -- -- 48 -- -- -- -- --

Message:
bc739847dd59b8f6 21e6f9016ae9292d 44c2f9f008f175fc fb1a9d7d2f5af0d9 c709f78dfa830460

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 00000000

34d781770fae25d9 4bcdf7304704b1a0 aeb1cc6a3d9a4b9f 879b5b095e744910 09096232b744ac44

63faab93d1b6a3f5 7aca93b5c0c2afa0 f1b2772194934266 41e5a573d5efc16f 34e0e077bfb4ce43

48bb5cb11aa15738 3ecb466e4aa6fec3 4e3e5449626d5e2d ccec6be24c92d63b fb652d66cc6a4621

356d6bfdd56b1afb d9da9b8c0e366cd3 034ad6fdd9caa885 236ade6960c8edaf 03d6d60e45aeb00e

b8132036d4e20f33 8e4a29bbbd2c1cb8 8549b303

26/28



Keccak Crunchy Crypto Contest
A solution for 4-round preimage challenge of width 1600

Challenge: 7d aa d8 07 f8 50 6c 9c 02 76

27/28



Keccak Crunchy Crypto Contest
A solution for 4-round preimage challenge of width 1600

Challenge: 7d aa d8 07 f8 50 6c 9c 02 76

Preimage:
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0b9eed82c23255f5 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

0000000000000000 0000000000000000 00000000

1c992115b20be87e 9c4db251c5fad36a 2c9060dec9357251 867a8f082ede00aa 2eaff48177a506da

79eefce6557a40ee 584677049bc52c08 6e3276d820c23daa d2d3181a1187b0b0 7ce6f00a73920b4c

e82d8f3276e85543 3cf77a79137cb68c b0d325479f4d33aa 6322817be3f75cdc 1b2d1fc33847eefa

3815737090003e07 f3ae39ce20ca35f1 fe9cf333317e463e 9cb46a02e2c495ce 4dfae61d5770ab3d

ea5218e748a57f6b 5cdac47ec1c508be c16d020b

27/28



Summary

I Properties of the nonlinear operation χ and its inverse χ−1

I Linear structures of Keccak-f permutation

I Improved zero-sum distinguishers on Keccak-f permutation

I Preimage attacks on Keccak

I Directions of future work

- how to find linear structures with large space
- more applications of linear structures

28/28


	Introduction
	SHA-3 hash function

	Linear Structures
	Linear structures of Keccak-f permutation
	Techniques for keeping 1+1 rounds being linear
	Techniques for keeping 1+2 rounds being linear

	Distinguishers
	Zero-sum distinguishers on Keccak-f

	Preimage Attacks
	Preimage Attacks on Keccak
	Setting up linear equations from the output of 
	Keccak Crunchy Crypto Contest

	Appendix

