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What weak bounds?

● ...from encrypting lots of data

Intel Hardware RNG: Single-machine bound on 
Adversary exceeds 2-30 in four months, 2-40 in four 
days.

With 1,000 machines (break-one-and-win), 
Adversary bound exceeds 2-20 in four days.

● ...from using small block, key sizes

Sensor networks, “Internet of Things”
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Rekeying can help, but “hybrid arguments” 
multiply Adversary advantage by number of keys 
used.



  

Don't panic.

Adversary Advantage

Provable upper boundBest known attacks



  

Case Study: NIST CTR-DRBG

EK EK EK

R K' IV'

IV IV+1 IV+2

Initialize with random (K, IV)

On each query:
Update (K, IV) ← (K', IV')
Return R as random value

(Counter-mode based deterministic random bit generator)
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Case Study: NIST CTR-DRBG

EK EK EK

R K' IV'
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How tight is this bound?

● Encrypt 0n under each of the q 
keys

● Choose q distinct keys at 
random, encrypt 0n under each

● Look for matches (use a hash 
table)

● Advantage: ~ q2/2k

Generic PRP attack on q keys 
with q time:

Attack doesn't work here because the mode of 
operation prevents it.

We can't reuse a plaintext, attack q “target” keys 
simultaneously with a single “test” key.



  

(Short) Construction-Specific proofs

Our Theorems
Support for 

blockcipher-
dependent rekeying



  

(Short) Construction-Specific proofs

Our Theorems

Recovered 
standard-model 

result

Support for 
blockcipher-

dependent rekeying



  

(Short) Construction-Specific proofs

Our Theorems

Recovered 
standard-model 

result

Tighter ideal-cipher 
model bounds

+
Secret/Random key 

guarantee
+

Surface 
precomputation 
effectiveness

Support for 
blockcipher-

dependent rekeying
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Our Theorems

Recovered 
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result
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TBC-based 
construction

+
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dependent rekeying



  

ICM with Key-Oblivious Access

Construction
(e.g., CTR-DRBG)

Decomposition
(Mode + Scheduler)

Ideal Primitive
(e.g., true RNG)

World 1 World 2 World 3

Identical black-box behavior
Hard to distinguish (when blockcipher 
replaced w/ secret random function)



  

Key-Oblivious Access

Construction
(e.g., CTR-DRBG)

Blockcipher

Mode

query(n, X)

Blockcipher

Key Scheduler

If ith Key Scheduler output 
is ( j, X), assign:  

A decomposition (right) is 
faithful to a construction (left) if 

no adversary can distinguish the 
two.



  

Key-Oblivious Access

Mode

query(n, X)

Blockcipher

Key Scheduler

If ith Key Scheduler output 
is ( j, X), assign:  

A mode is compatible with a 
scheduler if they cannot be forced 
to evaluate query at the same 
point (n, X).

Only constructions that use 
random, secret keys have 
compatible decompositions.

● Allows reduction to standard 
model

● Guarantees no related keys, 
weak keys



  

Using the model

Correctness – Find a compatible decomposition

Efficiency – Bound the number of blockcipher queries made per 
adversary query, bound number of key handles used

Sparsity – No input block is encrypted under more than μ key 
handles (except with probability ε)

ICM-KOA Security – Show Adversary has advantage δ when 
distinguishing decomposition from ideal primitive when the 
blockcipher is replaced by a random function that the 
adversary cannot compute “offline”.

(what you need to do)



  

Case Study: NIST CTR-DRBG

EK EK EK

R K' IV'

IV IV+1 IV+2

 Decomposition: The mode and 
scheduler both get the initial IV as a 
key, and track it as part of their 
respective states.

Initialize with random (K, IV)

On each query:
Update (K, IV) ← (K', IV')
Return R as random value



  

Case Study: NIST CTR-DRBG

EK EK EK

R K' IV'

IV IV+1 IV+2

Efficiency: Each key handle is used 
on three input blocks, and the number 
of key handles equals the number of 
adversary queries.

Initialize with random (K, IV)

On each query:
Update (K, IV) ← (K', IV')
Return R as random value



  

Case Study: NIST CTR-DRBG

EK EK EK

R K' IV'

IV IV+1 IV+2

Sparsity: No input block is encrypted 
under more than c key handles, except 
with probability ~ (3q)c+1/(2cn(c+1)!). 
(Generalized birthday bound). 

Initialize with random (K, IV)

On each query:
Update (K, IV) ← (K', IV')
Return R as random value



  

Case Study: NIST CTR-DRBG

F(K,•) F(K,•) F(K,•)

R K' IV'

IV IV+1 IV+2

ICM-KOA security: If F is a random 
function unknown the adversary, then the 
RNG behaves ideally unless a (K, X) pair 
is reused. This happens with probability 
at most 5q2/22n.

Initialize with random (K, IV)

On each query:
Update (K, IV) ← (K', IV')
Return R as random value



  

Case Study: NIST CTR-DRBG

F(K,•) F(K,•) F(K,•)

R K' IV'
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Initialize with random (K, IV)

On each query:
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Offline queriesOnline queries Precomputation queries



  

Case Study: NIST CTR-DRBG

In this case, the ICM-KOA:

● Recovers the O(q2/2128) standard model bound (four days to 
pass 2-40)

● Also gives an ICM result of 748,229 years (280 offline queries)

More generally, the ICM-KOA:

● Models blockcipher-dependent rekeying
● Gives a standard-model proof
● Offers tighter ICM bounds while forcing random + secret keys
● Quantifies effectiveness of precomputation, offline queries
● Implies standard-model security of a TBC-based construction

…for a small, single effort.



  

Questions?

Also in the paper: analysis of rekeyed-counter mode variants, and some 
general results about multi-instance distinguishability games.
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