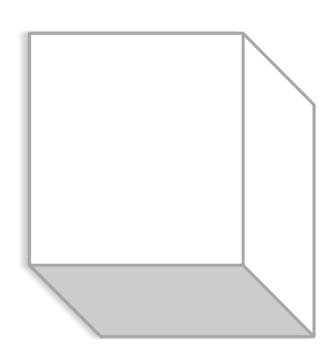
### Towards Practical Whitebox Cryptography: Optimizing Efficiency and Space Hardness

Andrey Bogdanov, Takanori Isobe and Elmar Tischhauser DTU and Sony

Hanoi, Vietnam Asiacrypt'16 5 December 2016

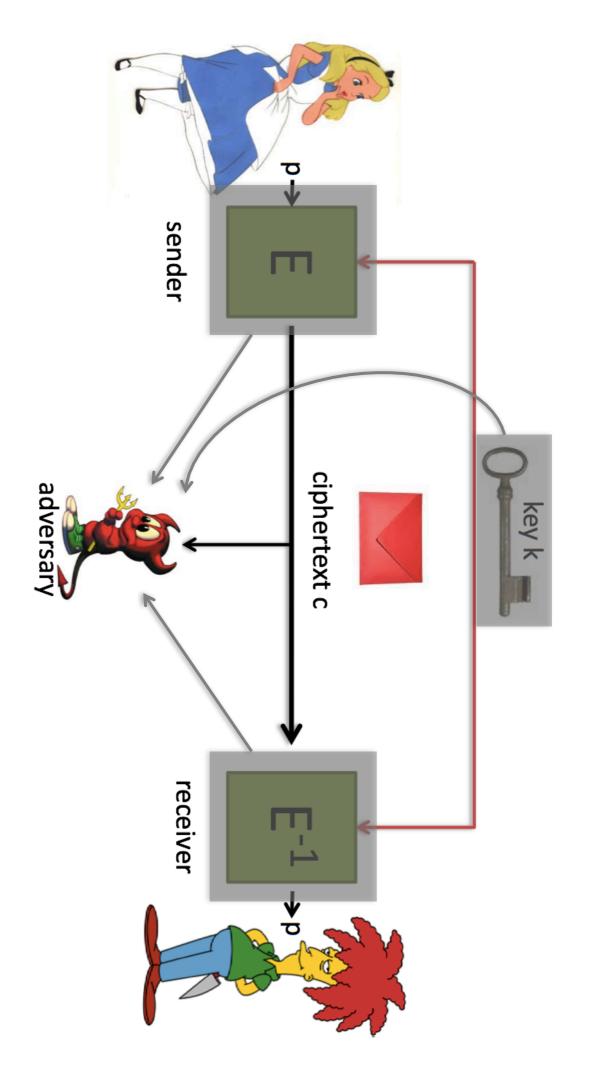
#### Motivation


What can our techniques from symmetric-key domain say about whitebox primitives?

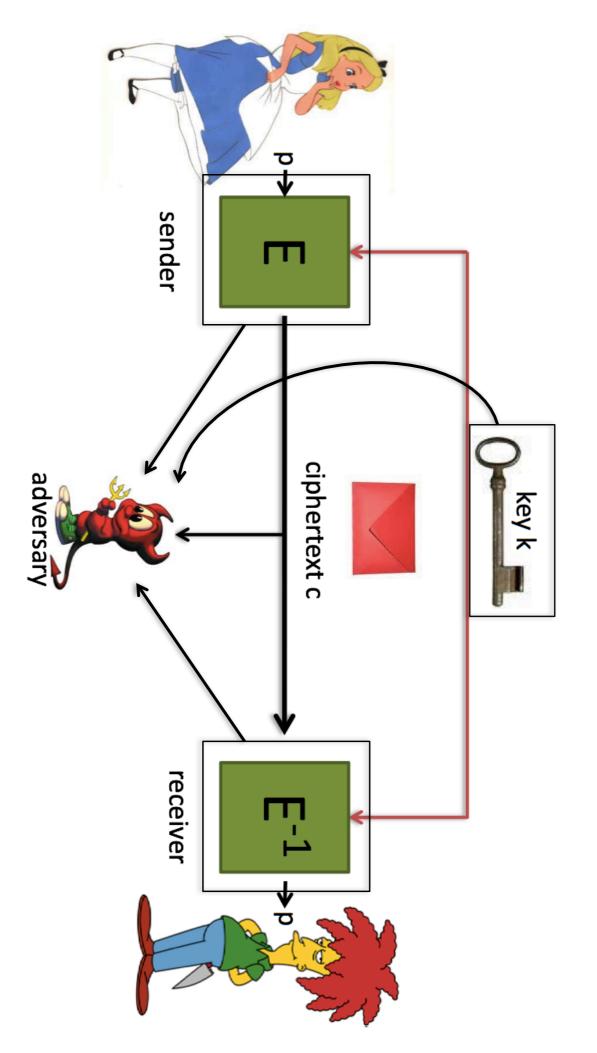
Is it possible to attain any arguable level of residual security in the whitebox setting?

#### In this talk

- Setting and Requirements
- Applications
- **Existing Whitebox Solutions**
- SPACEcipher: AES-based Whitebox Block Cipher
- SPNbox: Dedicated Whitebox Block Cipher
- Implementations in the Black and White Boxes


### IN THE WHITE BOX




#### **₽** sender Theory ciphertext c adversary key k receiver

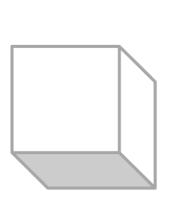
#### sender Theory: Black Box ciphertext c adversary receiver

# More Realistic: Grey Box



## Practice: White Box




## Black Box vs White Box

#### Black box

- Security mechanisms invisible
- Trustworthy hardware and software
- Computer security is based upon confidentiality of secret key

#### White box

- Malware, Trojans
- Memory leakage, side channels
- Critical weaknesses in OS and applications



## Black Box vs White Box

#### **Black box**

- Security mechanisms invisible
- Trustworthy hardware and software
- Computer security is based upon confidentiality of secret key

#### White box

- Malware, Trojans
- Memory leakage, side channels
- Critical weaknesses in OS and applications





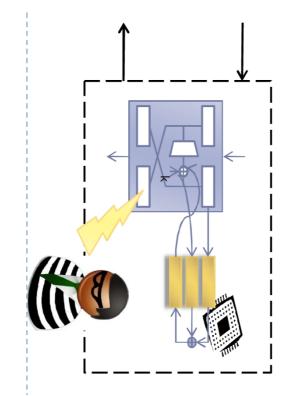
## Black Box vs White Box

#### Black box

- Security mechanisms invisible
- Trustworthy hardware and software
- Computer security is based upon confidentiality of secret key

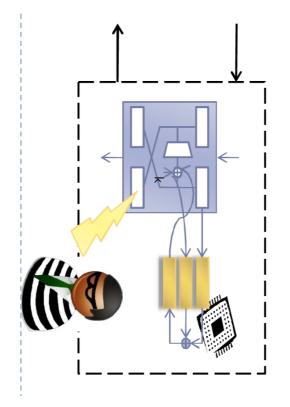
#### White box

- Malware, Trojans
- Memory leakage, side channels
- Critical weaknesses in OS and applications






# White Box: Attacker in Full Control


- What the whitebox attacker can do
- Read memory/registers
- Memory inspection
- CPU call interception
- Debugging
- Reverse-engineering
- Code tampering
- Cache attacks
- Inserting break-points
- Force a system crash
- Modification of internal variables
- Dynamic analysis of the implementation





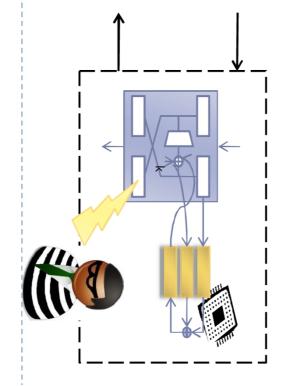
# White Box: Attacker in Full Control

- Adversarial capacity
- access to intermediate states
- access to memories
- access to execution
- Designer's goal
- attain some residual security
- Important note
- We cannot protect against every adversary!



# White Box: Residual Security

### Weak whitebox security

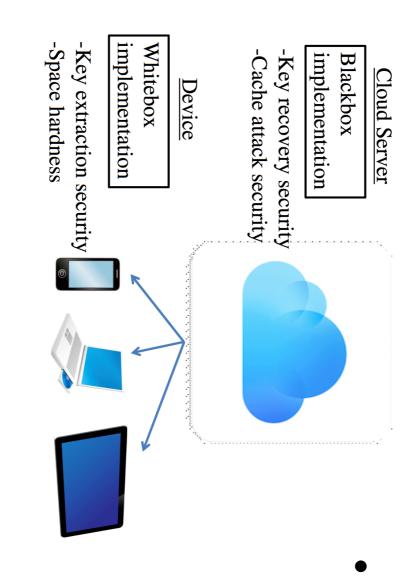

It is difficult to recover the cipher's key

## Strong whitebox security

Weak whitebox security

+

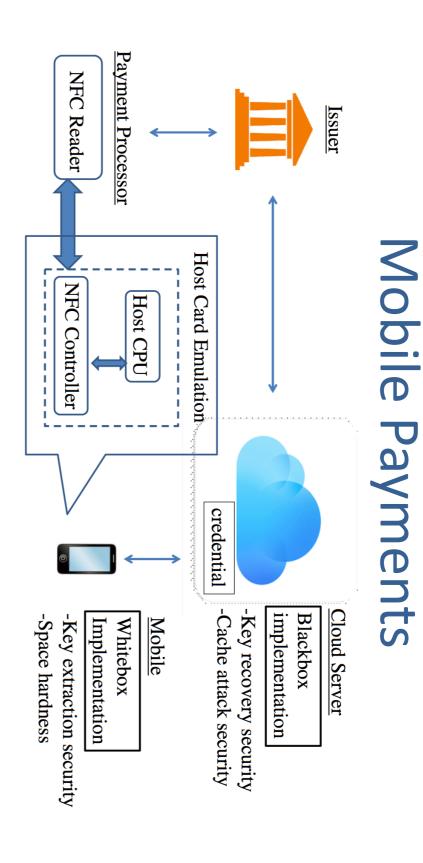
- It is difficult to encrypt given decryption functionality in WB
- It is difficult to decrypt given encryption functionality in WB




#### Part 2

### **APPLICATIONS**




## Content Distribution

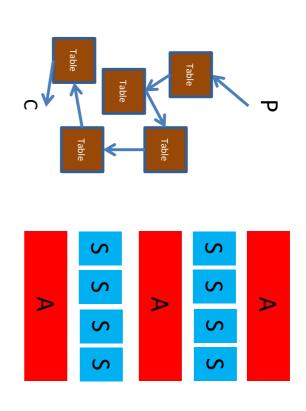


### DRM in the cloud

- Cloud server encrypts for devices
- Constant-time blackbox implementation in the cloud
- Whitebox implementation on the device

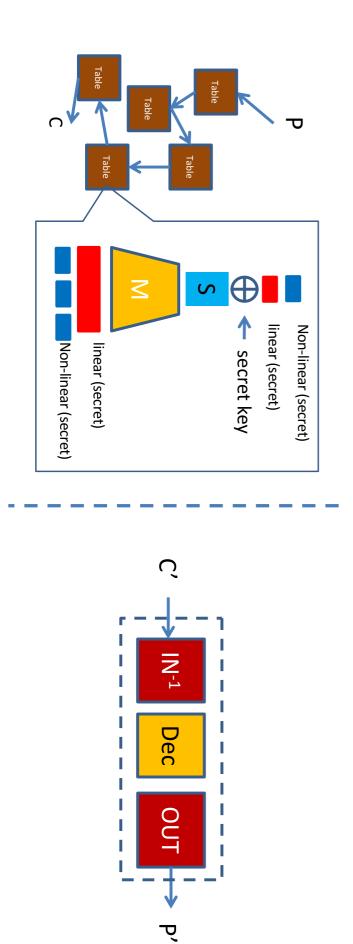
# Host Card Emulation in Cloud-based




- HCE enables NFC transactions in pure software
- HCE supported from Android 4.4 KitKat on

### Other Applications

- Authentication
- Mobile banking
- Governments and military
- Protection against mass-surveillance


Part 3

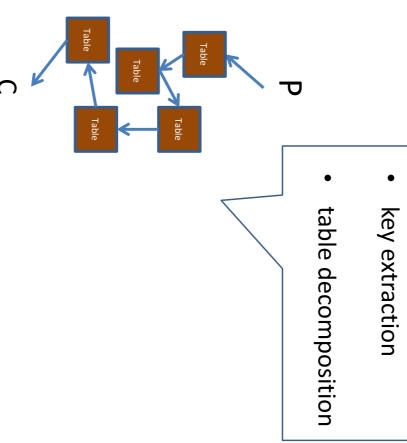
# **EXISTING WHITEBOX SOLUTIONS**



# Traditional Approach: Tables

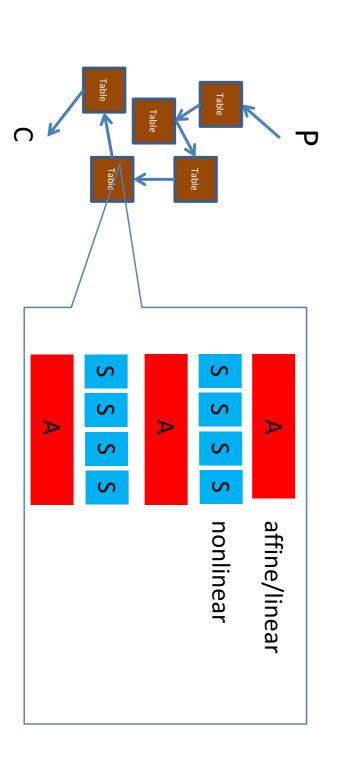
- Whitebox Implementation [C+02]
- Encoded table
- Convert computations of a cipher (e.g., AES and DES) into tablebased ones and put key into table to protect it from WB attacker
- External encoding
- Add a secret permutation in the beginning and end of the cipher




# Traditional Approach: Tables

- Whitebox AES implementations
- 8-bit table based [C+02]
- polynomial equations based [BCD06]
- 16-bit table based [XL09]
- dual AES table based [K10]
- Whitebox DES implementation
- 8-bit table based [C+02]

# Traditional Approach: Tables


# All published WB implementations of AES/DES are broken

- Whitebox implementations of AES
- 8-bit table based [C+02]
- Practical attacks [BGE04][MGH08]
- Polynomial equations based [BCD06]
- Practical attacks [M14]
- 16 bit table based [XL09]
- Practical attacks [MRP12] [MGH08]
- Dual AES table-based [K10]
- Practical attacks [M14]
- Whitebox implementation of DES
- 8 bit table based [C+02]
- Practical attacks [W09]
- Adhoc solutions, limited fundamental base
- Most implementations are insecure even in gray box
- DPA by Ruhr University Bochum, FSE'16
- DCA by NXP, CHES'16
- DFA by Riscure from BlackHat EU'15



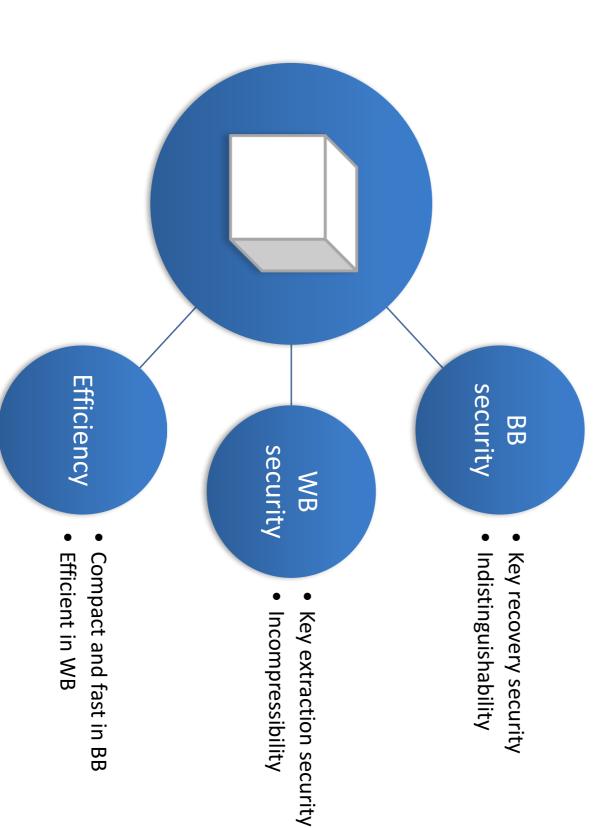
# Dedicated Approach: ASASA

- Dedicated construction: ASASA construction [BBK14]
- Table-based decomposition-hard problem
- A: affine/linear bijective transform
- S: nonlinear bijective transform



# Dedicated Approach: ASASA

- Security
- Hard to quantitatively evaluate
- Generic attack: n-bit block (ASASA) and m-bit S-box
- Time to compose: 2<sup>(n-m)m</sup>
- \* If m = 8, n = 16 : security 64 bits
- Practically broken
- key recovery [IDKL15, MDFK15]
- code lifting (decomposition of table) [IDKL15, MDFK15]
- At least 12 layers are needed to attain security [BK15]
- The underlying problem needs more analysis


## Existing Approaches

# Summary of Practical Symmetric-Key Whitebox Proposals

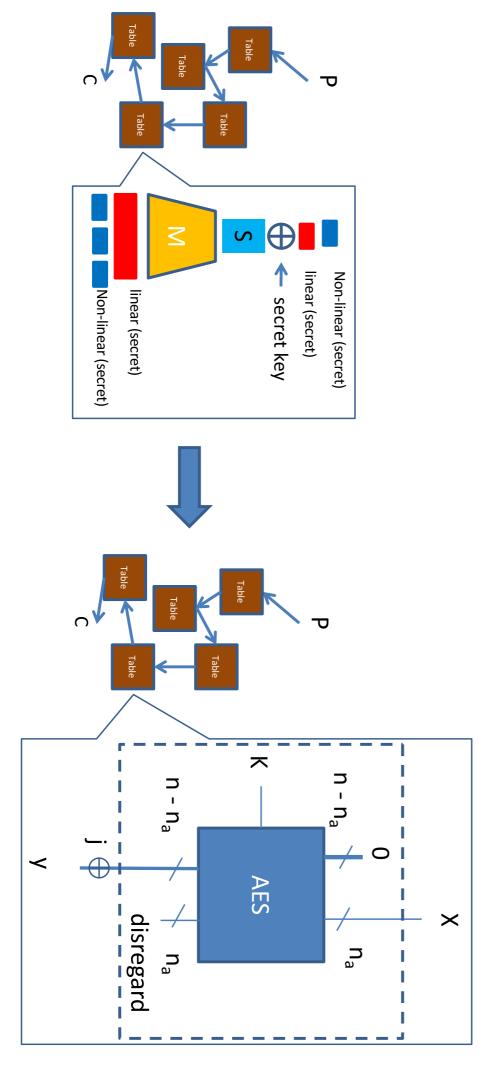
| ASASA<br>[BBK14]                | WB-AES<br>[C+02] and<br>similar |                |          |
|---------------------------------|---------------------------------|----------------|----------|
| Secure?                         | Secure                          | Key Recovery   | Blackbox |
| Secure?                         | Secure                          | Distinguishing | kbox     |
| Insecure<br>[IDKL15,<br>MDFK15] | Insecure<br>[BGE04]             | Key Recovery   | Whit     |
| Insecure<br>[IDKL15,<br>MDFK15] | Insecure<br>[BGE04]             | Decomposition  | Whitebox |

Any comparable approach with some security in the whitebox?

### Robust Whitebox Cryptography Challenge:



Part 4


## $\oplus$

### SPACE CIPHER (ACM CCS'15): **AES-BASED WHITEBOX BLOCK CIPHER**

### What is Different?

### raditional WB solutions [C+02] and others

#### **SPACEcipher**



### Design Goals

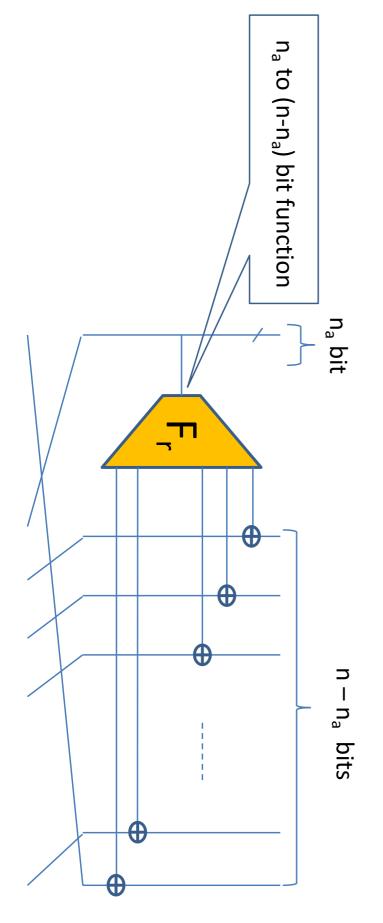
- 1. Security of the whitebox solution relies on a well-analyzed problem
- key recovery problem for a block cipher, e.g. AES
- 2. No external encoding
- applicable in a wide range of environments executable in the stand-alone manner to be
- 3. Multiple code (table) sizes if needed
- Apply differently sized tables in different rounds

## Security Requirements

- Security in the black box
- Key recovery resistance
- computationally hard to extract a key
- Distinguishing resistance
- computationally hard to distinguish it from random keyed perm.
- Security in the white box
- Key recovery resistance
- computationally hard to extract a key
- Space hardness (decomposition resistance)
- computationally hard to decompose internal component (table)
- (T/2, 128)-space hardness
- ct. (in)compressibility in SAC'13
- cf. big-key symmetric encryption in CRYPTO'16 and key derivation in AC'16

# What is Space Hardness?

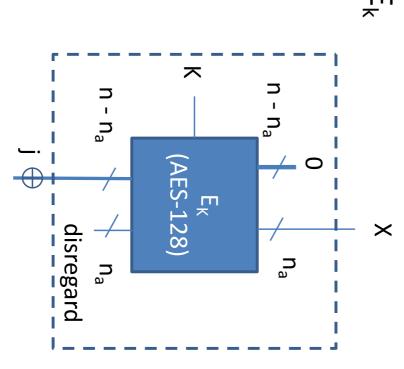
 $2^{-2}$  for any plaintext/ciphertext given the code (table) function F is a (M, Z)-space hard implementation of a whose size is less than M in whitebox environments. encryption/decryption with probability of more than block cipher  $E_K$  if it is infeasible to efficiently compute Definition 1 ((M, Z)-space hardness). The


### E.g., (**T/2**, 128)-space hardness:

compute any plaintext or ciphertext with probability of  $2^{-128}$ An attacker needs to obtain at least half of the total table size to

attacks by the amount of required code (table) size to be isolated from white-box environments for an attacker. It enables us to quantitatively evaluate security of code lifting

### Unbalanced Target-Heavy Feistel Network


- Block size : n
- #branches: I
- Size of each line : n/l bit
- Function (Table) size:  $n_a$  to  $(n n_a)$  bits



### The F-function

- $n_a$  to  $(n-n_a)$ -bit function
- based on well-analyzed block cipher E<sub>k</sub>
- e.g., AES, PRESENT, etc
- $-y = F_r(X) = trunc_{n-na}(E_k(i | X)) ^ j$
- i = 0, j = r (excluded from table)

Same F-function w/ round constants



 $trunc_x(Y)$ : output x bit of Y, x < n

## Example: SPACEcipher-X

4 variants with differently sized F-functions

- SPACECIPHER-8: n = 128,  $\ell = 16$ , R = 300,  $n_a = 8$ ,  $F_8^r: \{0,1\}^8 \to \{0,1\}^{120}$
- SPACECIPHER-16: n = 128,  $\ell = 8$ , R = 128,  $n_a =$ 16,  $F_{16}^r: \{0,1\}^{16} \to \{0,1\}^{112}$
- SPACECIPHER-24\*3:  $n=128, \ell=16, R=128,$   $n_a=24, F_{24}^r: \{0,1\}^{24} \rightarrow \{0,1\}^{104}$
- SPACECIPHER-32: n = 128,  $\ell = 4$ , R = 128,  $n_a = 32$ ,  $F_{32}^r: \{0,1\}^{32} \to \{0,1\}^{96}$

# Security in the White Box

- Key extraction in WB
- Relies on the block cipher security in BB
- and output of table What an WB attacker can do is to know/choose input
- A subset of attacks on AES possible only

# Security in the White Box

- Space hardness (decomposition)
- (T/2, 128)-space hardness
- compute any plaintext or ciphertext with probability of more than  $2^{-128}$ An attacker needs to obtain at least half of the total table size to

Trade-off between M and T

| 51.5 GB            | $25.8~\mathrm{GB}$                   | SPACECIPHER-32 |
|--------------------|--------------------------------------|----------------|
| $218 \mathrm{~MB}$ | $109~\mathrm{MB}$                    | SPACECIPHER-24 |
| $918~\mathrm{KB}$  | $459~\mathrm{KB}$                    | SPACECIPHER-16 |
| $3.84~\mathrm{KB}$ | $ \ 2.85\ { m KB}\  \ 3.84\ { m KB}$ | SPACECIPHER-8  |
|                    | 128                                  | K=128          |
| T                  | M                                    | Cipher         |

T: total table size M: code isolated

### Security in the Black Box

# Evaluation against distinguishing attacks

|    |    | on | F : Full Diffusion | Full | F : |     | G : Generic attack |
|----|----|----|--------------------|------|-----|-----|--------------------|
| 10 | 10 | 5  | 14                 | 5    | 11  | 128 | SPACECIPHER-32     |
| 17 | 30 | 6  | 32                 | 15   | -   | 128 | SPACECIPHER-24     |
| 12 | 18 | 9  | 44                 | 9    | 23  | 128 | SPACECIPHER-16     |
| 19 | 34 | 17 | 152                | 17   | 47  | 300 | SPACECIPHER-8      |
| Ι  | ID | L  | D                  | F    | G   | R   |                    |

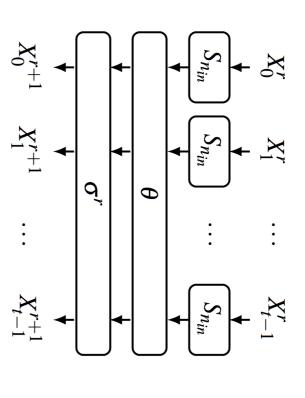
D : Differential attack, L : Linear attack

ID : Impossible differential attack, I : Integral attack

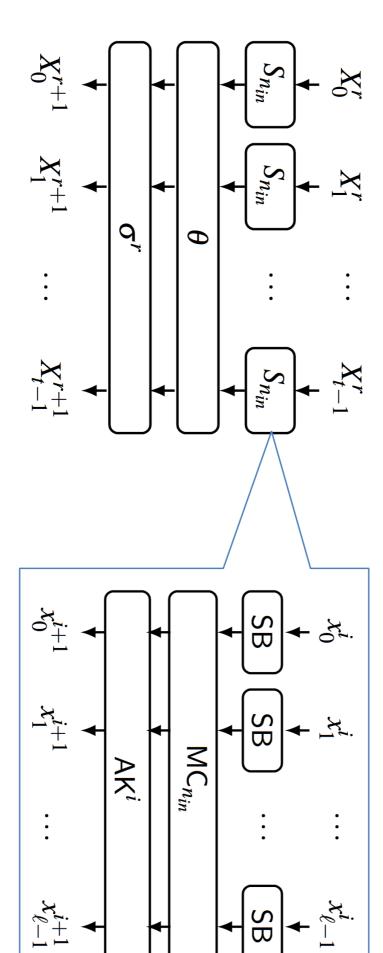
## Performance in white box

|          | hi+                | sists of $2 \sim 16$ | ACACA 1 . Claure consists of & v 16 hit |
|----------|--------------------|----------------------|-----------------------------------------|
|          | $4~\mathrm{KB}$    | $160~{ m TL}$        | AES(Black-box) [13]                     |
|          | $20.5~\mathrm{MB}$ | $80~\mathrm{TL}$     | AES(Xiao-Lai) [37]                      |
|          | $752~\mathrm{KB}$  | $3008~{ m TL}$       | AES(Chow et al) [11]                    |
|          | $20~\mathrm{GB}$   | $25~\mathrm{TL}$     | ASASA-3 [3]                             |
|          | $384~\mathrm{MB}$  | $64~\mathrm{TL}$     | ASASA-2 [3]                             |
|          | 8  MB              | $64~\mathrm{TL}$     | ASASA-1 [3]                             |
| HDD      | $51.5~\mathrm{GB}$ | $128~{ m TL}$        | SPACECIPHER-32                          |
| RAM      | $218~\mathrm{MB}$  | $128~{ m TL}$        | SPACECIPHER-24                          |
| L3 cache | $918~\mathrm{KB}$  | $128~{ m TL}$        | SPACECIPHER-16                          |
| L1 cache | $3.84~\mathrm{KB}$ | $300~{ m TL}$        | SPACECIPHER-8                           |
| Target   | Table size         | Performance          |                                         |

ADADA-1: S layer consists of  $8 \times 16$ -bit


ASASA-2 : S layer consists of 24-bit + 6  $\times$  16-bit + 8 bit ASASA-3 : S layer consists of 4  $\times$  28-bit + 16-bit

### Performance in black box

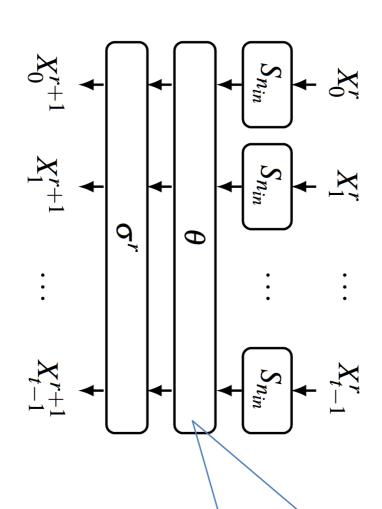

- decomposing the tables Implementation without tables is possible by
- Underlying internal block cipher can be freely chosen depending on user requirements
- a wide range of implementations in the black box are thinkable
- For example:
- S/W lightweight block cipher such as PRIDE and SIMON/
- Implementation with very small size of RAM and code is possible
- AES-128
- Optimization for speed by AES-NI and bit sliced implementations

Part 5

# SPN BOX: DEDICATED WHITEBOX CIPHER



### Design: Nested SPN




Underlying block cipher:

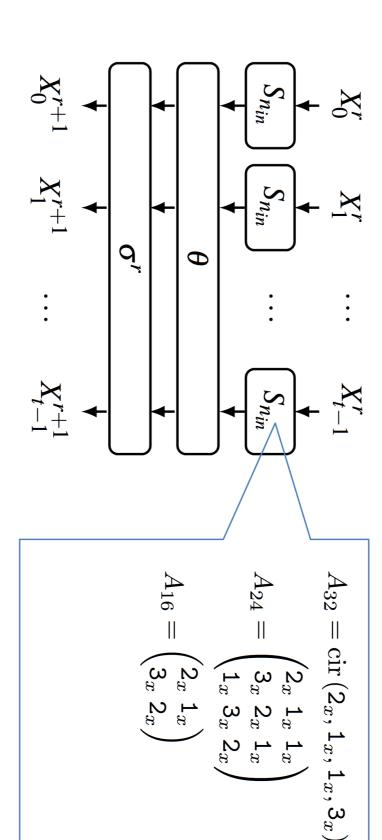
- 8-, 16-, 24- or 32-bit block
- 16, 20, 32 or 64 rounds
- AES S-box
- AES MixColumn based MDS diffusion

- Outer block cipher
- 120- or 128-bit block
- 10 roundsMDS matrix

# Design: Diffusion in the Outer Cipher



 $M_{32} = \operatorname{cir}(1_x, 2_x, 4_x, 6_x)$   $M_{24} = \operatorname{cir}(1_x, 2_x, 5_x, 3_x, 4_x)$   $M_{16} = \operatorname{had}(1_x, 3_x, 4_x, 5_x, 6_x, 8_x, b_x, 7_x)$   $M_8 = \operatorname{had}(08_x, 16_x, 8a_x, 01_x, 70_x, 8d_x, 24_x, 76_x, a8_x, 91_x, ad_x, 48_x, 05_x, b5_x, af_x, f8_x)$ 


### Outer block cipher:

- 120- or 128-bit block
- 10 rounds
- MDS matrix

### Matrix:

- $M_{32}$ ,  $M_{16}$  and  $M_8$  are involutions
- $\mathsf{M}_{32}$  and  $\mathsf{M}_{16}$  used in Anubis and Khazad
- $M_8$  is an optimized involutory Hadamard-Cauchy matrix from FSE'15

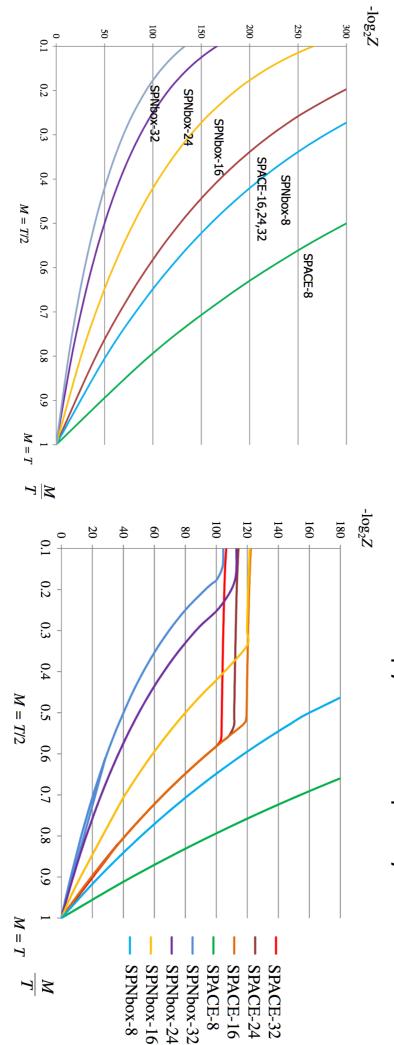
# Design: Diffusion in the Inner Cipher



 $^{\prime}2_{x} \, 1_{x} \, 1_{x}$ 

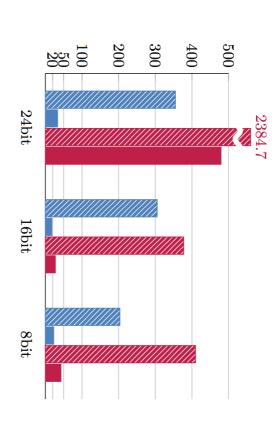
### Matrix:

- A<sub>8</sub> is the identity
- All matrices are submatrices of the AES MixColumn transform

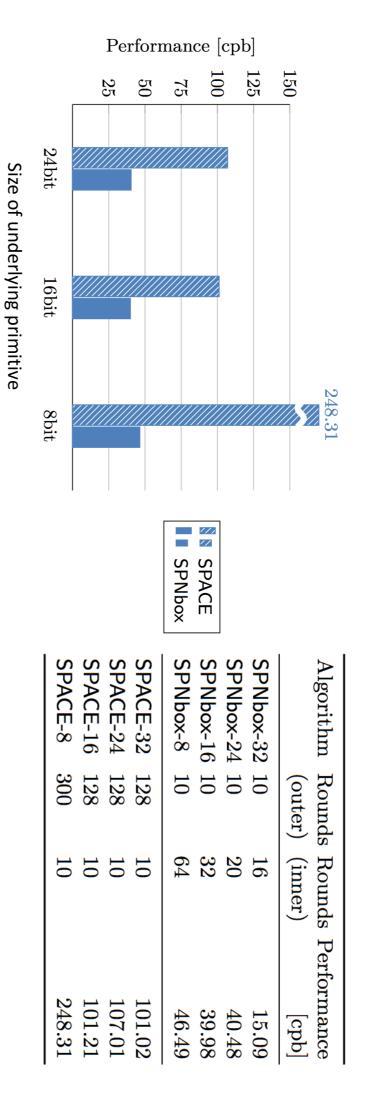

### Outer block cipher

- 120- or 128-bit block
- MDS matrix 10 rounds

### Weak Space Hardness

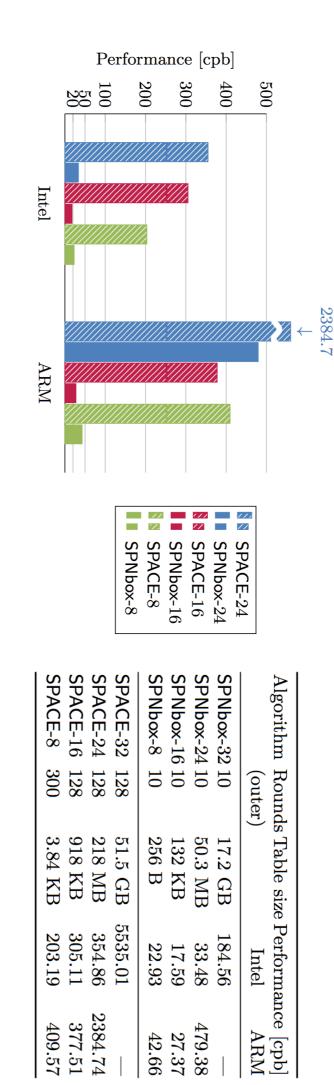

Before the plaintext is given, the attacker can copy tables non-adaptively

Before the plaintext is given, the attacker can copy tables adaptively




Part 6

### IMPLEMENTATION STUDY




## Blackbox Implementation



at 3400 MHz with disabled TurboBoost and disabled hyperthreading, averaged over Constant-time BB performance on Intel Skylake with AES-NI, Intel Core i7-6700, 100000 repetitions (lower is better)

## Whitebox Implementation



WB performance on Intel Skylake i7-6700 and ARMv8 Cortex-A57 (Samsung Galaxy S6)

### Conclusions I

- Secure AES-based WB cipher: SPACEcipher
- Security = key recovery, so weak WB security
- Same algorithm, different possible space requirements
- Key extraction in WB bases directly on AES key recovery
- Secure dedicated WB cipher: SPNbox
- Weak WB security
- Higher performance than SPACEcipher
- Key extraction in WB bases on the security of a dedicated cipher

### Conclusions II

- Other efficiency/space-hardness tradeoffs possible
- Up to 2-7x speedup for SPACEcipher
- Up to 2x speedup for SPNbox
- More detailed and further provable settings possible
- Cf. big-key symmetric encryption, CRYPTO'16
- Cf. strong space-hardness, see this paper
- Cf. key derivation in the next talk

## Performance Comparison

Primitives", next talk [FKK+16] P.-A. Fouque, P. Karpman, P. Kirchner, B. Minaud "Efficient and Provable White-Box

|                            | Whitebox, cycles per call | Blackbox, cycles per call |
|----------------------------|---------------------------|---------------------------|
| Puppycipher-16 [FKK+16]    | 2960                      | 4140                      |
| Hound-16 [FKK+16]          | 2300                      | 3520                      |
| Coureurdesbois-16 [FKK+16] | 3190                      | 3100                      |
| SPNbox-16, here            | 281                       | 640                       |
| Puppycipher-24 [FKK+16]    | 27570                     | 6760                      |
| Hound-24 [FKK+16]          | 26540                     | 5490                      |
| Coureurdesbois-24 [FKK+16] | 17360                     | 4470                      |
| SPNbox-24, here            | 502                       | 607                       |

[FKK+16]: Xeon E5-1603v3 (Haswell)

Durs: i7-6700 (Skylake)