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Diffie–Hellman

Pick an abelian group G = 〈g〉.

g

gA

gB

φA

φB

gAB

• Picks secret A which determines φA : G → G , g 7→ gA.

• Sends gA.
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Diffie–Hellman

Pick an abelian group G = 〈g〉.

g

gA

gB

φA

φB

gAB

• Receives gB .

• Computes

(gB)A = gAB

= (gA)B .

• Use gAB as secret key.
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Small Subgroup Attacks

• Alice uses long term secret A.

• Adversary will play the role of Bob.

• Adversary sends h instead of gB , where ord(h) = r is small.

• Adversary is able to learn A (mod r).

• Adversary repeats with different h’s to recover all of A.
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Isogenies

• Fix a finite field k = Fp and a finite extension K = Fq where q = pk .

• Let E1 and E2 be elliptic curves over K .

Definition

An isogeny between E1 and E2 is a non-constant morphism defined over
Fq that sends O1 to O2. We say that E1 and E2 are isogenous.

Fun facts:

• Isogenies are group homomorphisms.

• If φ is separable, then # ker φ = deg φ.

• For every finite subgroup G ⊂ E1, there is a unique E2 (up to
isomorphism) and a separable φ : E1 → E2 such that ker φ = G .
We write E2 = E1/G .

• The isogeny can be constructed by an algorithm by Vélu.
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Supersingular Elliptic Curves

Definition

An elliptic curve E/Fpk is said to be supersingular if #E (Fpk ) ≡ 1
(mod p).

Fun facts:

• All supersingular elliptic curves can be defined over Fp2 .

• There are approximately p/12 supersingular curves up to
isomorphism.
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Jao–De Feo

Set up:

• Choose p = 2n · 3m · f − 1, such that 2n ≈ 3m and f small.

• Choose supersingular elliptic curve E over Fp2 .

• Then E [2n],E [3m] ⊆ E (Fp2).

• Alice works over E [2n] with linearly independent points PA,QA.

• Bob works over E [3m] with linearly independent points PB ,QB .
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Jao–De Feo

E

E/GA

E/GB

φA

φB

E/〈GA,GB〉

• Picks secret (a1, a2) which determines GA = 〈[a1]PA + [a2]QA〉.
• Computes φA with ker φA = GA via Vélu.

• Sends E/GA, φA(PB), φA(QB).
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Jao–De Feo

E

E/GA

E/GB

φA

φB

E/〈GA,GB〉

• Receives E/GB , φB(PA), φB(QA).

• Computes

G ′
A = 〈[a1]φB(PA) + [a2]φB(QA)〉

= 〈φB([a1]PA + [a2]QA)〉
= 〈φB(GA)〉 .

• Uses j(EAB) as secret key.
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Importance of correct isogeny

Definition (Supersingular isogeny problem)

Given a finite field K and two isogeneous supersingular elliptic curves
defined over K , compute an isogeny ϕ : E1 → E2.
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Importance of correct isogeny

Definition (Supersingular isogeny problem)

Given a finite field K and two isogeneous supersingular elliptic curves
defined over K , compute an isogeny ϕ : E1 → E2.

• There are infinitely many isogenies E → EA.

• We need E/〈GA,GB〉 = EA/〈φA(GB)〉 = EB/〈φB(GA)〉.
• Given some φ : E → EA, to complete the square, one needs

ker φ ⊆ 〈PA,QA〉.
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Importance of correct isogeny

Definition (Supersingular isogeny problem)

Given a finite field K and two isogeneous supersingular elliptic curves
defined over K , compute an isogeny ϕ : E1 → E2.

Definition (Special supersingular isogeny problem)

Given a special prime p, E and EA, and generators of a torsion subgroup
in E and EA, and given that there exists φA : E → EA with deg φA = 2n,
recover φA.
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Adaptive attack

• Recall we have E and PA,QA ∈ E [2n], and
ker φA = 〈[a1]PA + [a2]QA〉.

• Dishonest user is playing Bob.

• Model: O(E ,R,S ,E ′) returns 1 if j(E ′) = j(E/〈[a1]R + [a2]S〉) and
0 otherwise.
This corresponds to Alice taking Bob’s protocol message, completing
her side of the protocol, and then performing some operations using
the shared key that return an error message if shared key is not
j(E ′).
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Adaptive attack

• Complete honest round of protocol with
(EB ,R = φB(PA),S = φB(QA)) and obtain EAB .

• In next round, choose suitable integers a, b, c , d and send
(EB , [a]R + [b]S , [c]R + [d ]S) to Alice.

• Recover parity of a2:
• Query oracle on (EB ,R, S + [2n−1]R,EAB).
• Then subgroup is

〈[a1]R + [a2]S + [a2][2
n−1]R〉 =

{
〈[a1]R + [a2]S〉 if a2 even,

〈[a1]R + [a2 + 2n−1]S〉 if a2 odd.
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Adaptive attack

Lemma

Assuming that Alice has chosen (a1, a2) as her private key such that both
are not simultaneously even, an attacker may assume that the private key
is of the form (1, α) or (α, 1).

If a2 even, then secret key is of the form (1, α). If not, one can take
secret key to be of the form (α, 1).

• Suppose secret is (1, α).

• Inductively recover all bits of α.

• Recover parity of α:

• Query oracle on (EB ,R, [1 + 2n−1]S ,EAB).
• Then subgroup is

〈R + [α]S + [α][2n−1]R〉 =

{
〈R + [α]S〉 if α even,

〈R + [α+ 2n−1]S〉 if α odd.

12/17



Adaptive attack

Lemma

Assuming that Alice has chosen (a1, a2) as her private key such that both
are not simultaneously even, an attacker may assume that the private key
is of the form (1, α) or (α, 1).

If a2 even, then secret key is of the form (1, α). If not, one can take
secret key to be of the form (α, 1).

• Suppose secret is (1, α).

• Inductively recover all bits of α.

• Recover parity of α:
• Query oracle on (EB ,R, [1 + 2n−1]S ,EAB).
• Then subgroup is

〈R + [α]S + [α][2n−1]R〉 =

{
〈R + [α]S〉 if α even,

〈R + [α+ 2n−1]S〉 if α odd.

12/17



Implications

• Static key implementations are vulnerable.

• Recovers one bit per hostile interaction (as good as it gets in our
model).

• Defeats point order and Weil pairing validations.

• There is a countermeasure by Kirkwood et al. based on the
Fujisaki–Okamoto transform. It has 100% overhead.
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Solving quaternion isogeny problem

Previous work [KPLT14]:

• Solved the supersingular isogeny problem in the quaternion case.

• Found an isogeny of degree `e , but e ∼ 7
2 log` p.

• Need an isogeny of degree `e , where e ∼ 1
2 log` p.

• Not enough to solve the special supersingular isogeny problem.
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Our work

Our work:

• Construct ideal of arbitrary norm using methods from above.

• Arbitrary ideal has dimension 4.

• Use lattice methods to find Minkowski reduced basis.

• Hope to find/construct an element with a suitable norm from
reduced basis.

Implications:

• Our algorithm allows us to recover Alice’s isogeny given the
endomorphism rings involved.

• We have shown that the Jao–De Feo cryptosystem is at most as
difficult as computing the endomorphism ring.

• Still remains a hard problem.
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Hardness of bits

Definition (Isogeny hidden number problem)

Given all the public parameters of the SIDH key exchange, and some
partial information of the shared secret, compute the shared secret.

• We solved this problem for when the partial information is one
component of the j-invariant.

• Computing one component of the j-invariant is as hard as
computing the entire j-invariant.

• Therefore the two parties can compress (without loss of security) the
shared secret into just one component of the j-invariant.
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Conclusion

• Shown an adaptive attack that recovers secret isogeny.
• Lemma to normalise secret key.
• Static keys are prone to this attack.

• Shown that Jao–De Feo cryptosystem is at most as hard as
computing endomorphism ring.

• Uses equivalence of categories.
• Perform computations on maximal orders of quaternion.

• Shown a bit-security result.
• Safe to truncate j-invariants into components.

THANK YOU!

17/17



Conclusion

• Shown an adaptive attack that recovers secret isogeny.
• Lemma to normalise secret key.
• Static keys are prone to this attack.

• Shown that Jao–De Feo cryptosystem is at most as hard as
computing endomorphism ring.

• Uses equivalence of categories.
• Perform computations on maximal orders of quaternion.

• Shown a bit-security result.
• Safe to truncate j-invariants into components.

THANK YOU!

17/17


	Preliminaries
	Findings

