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Motivation



(ZK) Proofs of Knowledge - PoK

Prover Verifier

Statement: 𝑥 ∈ 𝐿

⋮

Accept/Reject

Witness: 𝒘

1) Completeness: the verifier always accepts a valid proof

2) PoK: for any convincing verifier, we can extract 𝒘
3) Prover privacy is preserved via some ZK variant

Accept/Reject



Schnorr Identification – PoK of DLog

Prover Verifier

Parameters: 𝑔, 𝑞

Check if

𝑔𝑟 = 𝑎 ∙ (𝑝𝑘)𝑐

pick 𝑡 ∈ 𝑍𝑞
𝑎 = 𝑔𝑡

𝑎

pick 𝑐 ∈ 𝑍𝑞𝑐

𝑟 = 𝑡 + 𝑐 ∙ 𝑠𝑘
𝑟

Statement: ∃𝑠𝑘: 𝑝𝑘 = 𝑔𝑠𝑘

Witness: 𝑠𝑘



Schnorr Identification – PoK of DLog

Prover Verifier

Parameters: 𝑔, 𝑞

Schnorr identification is a Sigma 

protocol that achieves special 

soundness and honest-verifier ZK

Statement: ∃𝑠𝑘: 𝑝𝑘 = 𝑔𝑠𝑘

Witness: 𝑠𝑘



Some motivating thoughts…

• PoK of DLog convinces us that the prover 

actually has the witness.



Some motivating thoughts…

• PoK of DLog convinces us that the prover 

actually has the witness.

• But how did the prover manage to 

convince us?

 Did it run efficiently because it had 

knowledge of the witness OR

 Did it work for a (superpolynomial) 

amount of a time to solve the given 

DLog problem?



Reducing Spam

“If I don’t know you and you want to send me a message, then you 

must prove that you spent, say, ten seconds of CPU time, just for me 

and just for this message” [DN92]
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Reducing Spam

“If I don’t know you and you want to send me a message, then you 

must prove that you spent, say, ten seconds of CPU time, just for me 

and just for this message” [DN92]



Verifier

email Server

Bob

Approved contacts: 

- Alice

- ...
Eve

Not approved!

Mail server distinguishes 

between 

approved and 

non-approved contacts!!

Reducing Spam

“If I don’t know you and you want to send me a message, then you 

must prove that you spent, say, ten seconds of CPU time, just for me 

and just for this message” [DN92]

Alice
I am an approved contact



Verifier

email Server

Bob

Approved contacts: 

- Alice

- ...
Eve

Not approved!

Reducing Spam

Where Email approval is done in a 

privacy-preserving manner!

Alice
I am an approved contact



Reducing spam in a

privacy-preserving way

1. For senders to have access, they must 

prove that either
○ know some secret that implies their relation 

with the receiver OR 

○ has spent a certain amount of work in terms 

of computational resources.



1. For senders to have access, they must 

prove that either
○ know some secret that implies their relation 

with the receiver OR 

○ has spent a certain amount of work in terms 

of computational resources.

2. The prover’s mode that provided access to 

the sender, remains unknown to the mail 

server.

Reducing spam in a

privacy-preserving way



Proofs of Work - PoW

Task/Puzzle

solution
VerifierProver

Accept/Reject



Proofs of Work - PoW

Task/Puzzle

solution
VerifierProver

Accept

The verifier ascertains that the prover 

performed some certain amount of work, 

given the difficulty of the puzzle parameters



Proofs of Work or Knowledge (PoWorKs)

PoK:

PoW:

Prover either knows a 

witness to the statement 

or performed work to 

solve a puzzle

Prover

Verifier

Prover

Statement: 𝑥 ∈ 𝐿



PoK:

PoW:

Prover either knows a 

witness to the statement 

or performed work to 

solve a puzzle

Prover

Verifier

Prover

Indistinguishable
Proofs of Work or Knowledge (PoWorKs)

Statement: 𝑥 ∈ 𝐿
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Our contributions

 We define cryptographic puzzle systems.

 We define PoWorKs w.r.t. some language in NP 

and a fixed puzzle system.

 We provide an efficient 3-move PoWorK

construction.

 We provide two puzzle system instantiations 
(one in the RO model and one under complexity 

assumptions).

 We present applications of PoWorKs in
1. Privacy-preserving reduce spam.

2. Robustness in cryptocurrencies.

3. 3-round concurrently simulatable arguments of 

knowledge.



Cryptographic 

puzzles



Cryptographic Puzzles

Basic properties:

1) Easy to generate and 

efficiently sampleable

2) Hard to solve

3) Easy to verify

4) Amortization resistant



Cryptographic Puzzles

Basic properties:

1) Easy to generate and 

efficiently sampleable

2) Hard to solve

3) Easy to verify

4) Amortization resistant

5) Dense (can be sampled by just 

generating random strings )



Cryptographic Puzzles

We do not restrict 

parallelizability of our 

puzzles!



Dense Cryptographic Puzzles

● Sample (𝒉) −> 𝒑𝒖𝒛 ∈ 𝑷𝑺

● Solve (𝒉, 𝒑𝒖𝒛) −> 𝒔𝒐𝒍𝒏 ∈ 𝑺𝑷

● SampleSol(𝒉) −> (𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)

● Verify(𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏) −> 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒

PuzSys = {Sample, Solve , SampleSol, Verify}

hardness parameter

Puzzle Space 𝑷𝑺, Solution Space 𝑺𝑺, Hardness space 𝑯𝑺
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Puzzle Space 𝑷𝑺, Solution Space 𝑺𝑺, Hardness space 𝑯𝑺
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1) Completeness/Correctness and Efficient Sampleability of 

Sample and SampleSol

PuzSys = {Sample, Solve, SampleSol, Verify}
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Cryptographic Puzzles Security

1) Completeness and Efficient Sampleability of                            

Sample and SampleSol

2) 𝒈-Hardness:

PuzSys is 𝒈-hard, if for every adversary:

𝒑𝒖𝒛 < − Sample (𝒉)
𝒉, 𝒑𝒖𝒛

𝒔𝒐𝒍𝒏Verify (𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏) −> 𝑡𝑟𝑢𝑒

𝑻𝒊𝒎𝒆𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒚(𝒉, 𝒑𝒖𝒛) < 𝒈 (𝑻𝒊𝒎𝒆𝐒𝐨𝐥𝐯𝐞(𝒉, 𝒑𝒖𝒛))

With negligible probability

PuzSys = {Sample, Solve , SampleSol, Verify}
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Cryptographic Puzzles Security

1) Completeness and Efficient sampleability of                                 

Sample and SampleSol

2) 𝒈-Hardness

3) Statistical indistinguishability of Sample and SampleSol

4) (𝒕, 𝒌) −amortization resistance

𝒑𝒖𝒛𝟏, … , 𝒑𝒖𝒛𝒌 < − Sample(𝒉)
𝒉, 𝒑𝒖𝒛𝟏, … , 𝒑𝒖𝒛𝒌

𝒔𝒐𝒍𝒏𝟏, … , 𝒔𝒐𝒍𝒏𝒌for all 1 < 𝑖 < 𝑘
Verify(𝒉, 𝒑𝒖𝒛𝒊, 𝒔𝒐𝒍𝒏𝒊) −>
𝑡𝑟𝑢𝑒

PuzSys = {Sample, Solve , SampleSol, Verify}

𝑻𝒊𝒎𝒆𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒚(𝒉, 𝒑𝒖𝒛) < 𝒕(

𝒊=𝟏

𝒌

𝒈 (𝑻𝒊𝒎𝒆𝑺𝒐𝒍𝒗𝒆(𝒉, 𝒑𝒖𝒛𝒊))

With negligible probability



PoWorKs



PoWorK Definition

(𝑃, 𝑉) is an f-sound PoWorK for 𝐿 ∈ 𝑵𝑷 w.r.t. witness relation 

𝑅𝐿 and PuzSys, if it achieves the following properties:



PoWorK Definition

(𝑃, 𝑉) is an f-sound PoWorK for 𝐿 ∈ 𝑵𝑷 w.r.t. witness relation 

𝑅𝐿 and PuzSys, if it achieves the following properties:

1) Completeness: for all 𝒙 ∈ 𝐿,𝒘 ∈ 𝑅𝐿 𝑥 , 𝒛 ∈ 0,1
∗
, 𝒉 ∈ 𝐻𝑆

Pr[< 𝑃(𝒘) ↔ 𝑉 > (𝒙, 𝒛, 𝒉); 𝑉 → “accept”] = 1 − negl(𝜆)&

Pr[< 𝑃Solve(h) ↔ 𝑉 > 𝒙, 𝒛, 𝒉 ; 𝑉 → “accept”] = 1 − negl(𝜆)



PoWorK Definition

(𝑃, 𝑉) is an 𝒇-sound PoWorK for 𝐿 ∈ 𝑵𝑷 w.r.t. witness relation 

𝑅𝐿 and PuzSys, if it achieves the following properties:

1) Completeness

2) 𝒇-Soundness: for all 𝒙 ∈ 𝐿, 𝒚, 𝒛 ∈ 0,1
∗
, 𝒉 ∈ 𝐻𝑆 and 

prover 𝑷′:

● 𝒑𝒖𝒛 ←Sample(𝒉)
● < 𝑷′(𝒚) ↔ 𝑉 > (𝒙, 𝒛, 𝒉)

If 𝑉 accepts while 𝑇𝑖𝑚𝑒𝑷′ ≤ 𝒇 (𝑇𝑖𝑚𝑒Solve(𝒉, 𝒑𝒖𝒛)) then

∃ PPT extractor 𝑲 s.t 𝑲𝑷′(𝒙, 𝒚, 𝒛, 𝒉) ∈ 𝑅𝐿(𝒙)



PoWorK Definition

(𝑃, 𝑉) is an 𝒇-sound PoWorK for 𝐿 ∈ 𝑵𝑷 w.r.t. witness relation 

𝑅𝐿 and PuzSys, if it achieves the following properties:

1) Completeness

2) 𝒇-Soundness

3) Stat./Comp. Indistinguishability: for all 𝒙 ∈ 𝐿,𝒘 ∈ 𝑅𝐿 𝑥 , 𝒛

∈ 0,1
∗
, 𝒉 ∈ 𝐻𝑆 and verifier 𝑽′:

𝐯𝐢𝐞𝐰 𝑽′ ←< 𝑃 𝒘 ↔ 𝑽′ > 𝒙, 𝒛, 𝒉

𝐯𝐢𝐞𝐰 𝑽′ ←< PSolve(h) ↔ 𝑽′ > 𝒙, 𝒛, 𝒉



PoWorK

construction



Trivial 4-round PoWorK construction

VerifierProver

pick puzzle 𝒑𝒖𝒛

𝒑𝒖𝒛

compute commitment 𝒄𝒐𝒎 s.t.

𝒄𝒐𝒎 = Commit (𝒙) +

ZK: know 𝒘 that 𝒙 ∈ 𝑳

OR
𝒄𝒐𝒎 = Commit (𝒔𝒐𝒍)+
ZK : solved 𝒑𝒖𝒛 to sol

𝒄𝒐𝒎+ZK proof

42

Parameters:

𝑳, 𝒙, 𝝀,𝒉



3- round PoWorK Compiler

43

3-round 

special-sound HVZK
PuzSys

PoWorK



PoWorK Compiler

44

PoWorK

PuzSys= {Sample, 

Solve, Verify, 

SampleSol}

3-move special-sound

HVZK



3-move special-sound HVZK
Π = (P1,P2,Ver)

45

Verifier

𝐿, 𝑅𝐿, 𝒙

Prover (w)

Goal: prove that (𝒙,𝒘)
∈ 𝑅𝐿

(𝒂, 𝒖) ←P1(𝒘, 𝒙)

𝒓 ← P2(𝒄, 𝒖)

𝒂

𝒄 ← ChallengeSpace

0/1 ←Ver(𝒙, 𝒂, 𝒄, 𝒓)

𝒄

𝒓



3-move special-sound HVZK
Π = (P1,P2,Ver)

46

Verifier

𝐿, 𝑅𝐿, 𝒙

Prover (w)

Goal: prove that (𝒙,𝒘)
∈ 𝑅𝐿

(𝒂′, 𝒖′) ←P1(𝒘, 𝒙)

𝒓′ ← P2(𝒄′, 𝒖′)

𝒂′

𝒄′ ← ChallengeSpace

0/1 ←Ver(𝒙, 𝒂′, 𝒄′, 𝒓′)

𝒄′

𝒓′

● Completeness

● Special Soundness: poly-time extractor K that on input (x,a,c,r) & (x,a,c’,r’) outputs 

w s.t. (x,w) ∈ RL

● HVZK: poly-time simulator Sim that on input (x) outputs an accepting (x,a,c,r) with 

same distribution as P on input (x,w) and honest V



PoWorK Compiler - PoK mode

VerifierProver (𝒘)

𝐿, 𝑅𝐿, 𝒙, 𝒉



PoWorK Compiler - PoK mode

VerifierProver (𝒘)

(𝒂′, 𝒖) ←P1(𝒘, 𝒙) 𝒂′

𝐿, 𝑅𝐿, 𝒙, 𝒉



PoWorK Compiler - PoK mode

VerifierProver (𝒘)

(𝒂′, 𝒖) ←P1(𝒘, 𝒙) 𝒂′
𝒄 ← ChallengeSpace

𝒄

𝐿, 𝑅𝐿, 𝒙, 𝒉



PoWorK Compiler - PoK mode

VerifierProver (𝒘)

(𝒂′, 𝒖) ←P1(𝒘, 𝒙) 𝒂′
𝒄 ← ChallengeSpace

𝒄

𝒄′, 𝒓′, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏
(𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)←SampleSol(𝒉)

Set 𝒄′ = 𝒄 ⊕ 𝒑𝒖𝒛

𝒓′ ← P2(𝒄′, 𝒖)

𝐿, 𝑅𝐿, 𝒙, 𝒉



PoWorK Compiler - PoK mode

51

VerifierProver (𝒘)

(𝒂′, 𝒖) ←P1(𝒘, 𝒙) 𝒂′
𝒄 ← ChallengeSpace

𝒄

𝒄′, 𝒓′, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏 Verification

● 𝒄 = 𝒄′ ⊕ 𝒑𝒖𝒛
● Ver(𝒙, 𝒂′, 𝒄′, 𝒓′)
● Verify(𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)

(𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)←SampleSol(𝒉)

Set 𝒄′ = 𝒄 ⊕ 𝒑𝒖𝒛

𝒓′ ← P2(𝒄′, 𝒖)

𝐿, 𝑅𝐿, 𝒙, 𝒉



VerifierProver 

PoWorK Compiler - PoW mode

𝐿, 𝑅𝐿, 𝒙, 𝒉



VerifierProver 

(𝒂′, 𝒄′, 𝒓′) ←Sim(𝒙)
𝒂′

PoWorK Compiler - PoW mode

𝐿, 𝑅𝐿, 𝒙, 𝒉



VerifierProver 

𝒂′
𝒄 ← ChallengeSpace

𝒄

PoWorK Compiler - PoW mode

(𝒂′, 𝒄′, 𝒓′) ←Sim(𝒙)

𝐿, 𝑅𝐿, 𝒙, 𝒉



VerifierProver 

𝒂′
𝒄 ← ChallengeSpace

𝒄

𝒄′, 𝒓′, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏

PoWorK Compiler - PoW mode

Set 𝒑𝒖𝒛 = 𝒄 ⊕ 𝒄′
𝒔𝒐𝒍𝒏←Solve(𝒉, 𝒑𝒖𝒛)

(𝒂′, 𝒄′, 𝒓′) ←Sim(𝒙)

𝐿, 𝑅𝐿, 𝒙, 𝒉



VerifierProver 

𝒂′
𝒄 ← ChallengeSpace

𝒄

𝒄′, 𝒓′, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏

PoWorK Compiler - PoW mode

Set 𝒑𝒖𝒛 = 𝒄 ⊕ 𝒄′

𝒔𝒐𝒍𝒏←Solve(𝒉, 𝒑𝒖𝒛)
Verification

● 𝒄 = 𝒄′ ⊕ 𝒑𝒖𝒛
● Ver(𝒙, 𝒂′, 𝒄′, 𝒓′)
● Verify(𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)

(𝒂′, 𝒄′, 𝒓′) ←Sim(𝒙)

𝐿, 𝑅𝐿, 𝒙, 𝒉



Security of 

PoWorK compiler

Assumptions

● Challenge and puzzle sampling distributions are statistically close

● Both distributions are (statistically) invariant to any group operation ⊕
● Solve asymptotically dominates the protocol run

Theorem:

- 𝐿 language in 𝑵𝑷 with a witness relation 𝑅𝐿

- Π =(P1, P2, Ver) special-sound 3-move statistical HVZK for 𝑅𝐿

- PuzSys = (Sample, Solve,SampleSol , Verify) 

with 𝒈-hardness

(𝑃, 𝑉) is a (Θ(𝒈))-sound PoWorK with statistical indistinguishability.



Dense Puzzle

Instantiations



Dense Puzzle Instantiations

PuzSys = (Sample,SampleSol, Solve, Verify)

(1)  Based on random oracles

(2)  Based on complexity assumptions



Random Oracle instantiation

Assume a hash function 𝐻: {0,1}𝜆 → {0,1}𝜆

● Sample (𝒉): return 𝒑𝒖𝒛 ∈ 0,1 𝜆

● SampleSol (𝒉): pick 𝒙 ∈ 0,1 𝜆 and set                                   

𝒑𝒖𝒛 = 𝑳𝑺𝑩𝒉(𝐻(𝒙)) and 𝒔𝒐𝒍𝒏 = 𝒙

● Solve (𝒑𝒖𝒛): randomly pick 𝒙′ ∈ 0,1 𝜆 and try whether                 

𝑳𝑺𝑩𝒉(𝐻 𝒙′ ) = 𝒑𝒖𝒛
If yes, then output 𝒔𝒐𝒍𝒏 = 𝒙′

● Verify (𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏): check whether

𝑳𝑺𝑩𝒉(𝐻 𝒔𝒐𝒍𝒏 ) = 𝒑𝒖𝒛



Random Oracle instantiation

Theorem:

For every ℎ ∈ [log2𝜆, 𝜆/4], 𝑐 > 2, 𝑘 = 𝑂(
8
2𝜆), if H

is a RO, then the RO instantiation is a dense

puzzle system with
𝑐 (∙)- soundness and (𝑖𝑑, 𝑘)-

amortization resistance.



DLog instantiation

- We construct target collision resistant (TCR) 

strong extractors from regular universal oneway

hash functions (UOWHFs).



DLog instantiation

- We construct target collision resistant (TCR) strong 

extractors from regular universal oneway hash functions 

(UOWHFs).

- We prove that given a target TCR strong extractor 

𝐄𝐱𝐭, and a one-way function 𝒇 , we get that   

Ψ(𝒙, 𝑠𝑒𝑒𝑑)=(𝐄𝐱𝐭 𝒇(𝒙), 𝑠𝑒𝑒𝑑 , 𝑠𝑒𝑒𝑑 )  

is a dense one-way function (i.e. its output is close 

to uniform)



DLog instantiation

- We construct target collision resistant (TCR) strong 

extractors from regular universal oneway hash functions 

(UOWHFs).

- We prove that given a target TCR strong extractor 𝐄𝐱𝐭, 
and a one-way function 𝒇 , we get that   

Ψ(𝒙, 𝑠𝑒𝑒𝑑)=(𝐄𝐱𝐭 𝒇(𝑥), 𝑠𝑒𝑒𝑑 , 𝑠𝑒𝑒𝑑)

is a dense one-way function 

- Given randomness 𝒓 and hardness parameter 𝒉
we set the puzzle

𝒑𝒖𝒛 = 𝐄𝐱𝐭 𝐃𝐋𝐨𝐠
_𝟏 𝒙 + 𝒓 , 𝑠𝑒𝑒𝑑) , 𝑠𝑒𝑒𝑑, 𝒓

with solution 

𝒔𝒐𝒍𝒏 = 𝒙 ∈ {0,1}𝒉



DLog instantiation

Theorem:

For every ℎ ∈ [2log4𝜆, log5𝜆], 𝑐 > 2, 𝑘 = 𝑂(2log
3
𝜆),

if the TCR property of Ext is 𝑂( 2ℎ) −secure and

DLog is 𝑂(
𝑐
2ℎ) − hard, then the DLog instantiation

is a dense puzzle system with
𝑐 (∙)- soundness

and (𝑖𝑑, 𝑘)-amortization resistance.



PoWorK

applications



Privacy-Preserving Reducing Spam

Verifier

email Server

PoWorK

PoWorK
Mail server cannot distinguish 

between approved contacts or not

email Server

Bob

“If I don’t know you and you want to send me a message, then you 

must prove that you spent, say, ten seconds of CPU time, just for me 

and just for this message” [DN92]



Cryptocurrencies with 

enhanced liveness

Most blockchains are maintained via proofs of 

work



But...recent suggestions exist that are based in 

signatures/ proofs of knowledge

Cryptocurrencies with 

enhanced liveness



Hybrid PoW - PoK 

Cryptocurrencies 

OR

Cryptocurrencies with 

enhanced liveness



Hybrid PoW - PoK 

Cryptocurrencies 

OR

Cryptocurrencies with 

enhanced liveness

The ledger remains live 

even if many miners go 

offline



Hybrid PoW - PoK 

Cryptocurrencies 

OR

Cryptocurrencies with 

enhanced liveness

A trusted party could 

issue blocks in case of 

such emergency 



Hybrid PoW - PoK 

Cryptocurrencies 

OR

Cryptocurrencies with 

enhanced liveness

the trusted party’s involvement 

will be unnoticed and hence will 

have no impact to the economy 

that the cryptocurrency supports



3-round concurrently simulatable

arguments of knowledge

• We show that under reasonable 

assumptions our 3-move PoWorK

construction is straight-line simulatable in 

𝑂(𝜆poly(log𝜆)) time.

• 𝜆poly(log𝜆) is closed under polynomial.

• By the results of Pass, our PoWorK

construction is a 3-round concurrently 

simulatable argument of knowledge.



Conclusions 

and

Future Work



Conclusions

• We define PoWorKs, a meaningful novel 

class of interactive proof systems.

• We define and instantiate cryptographic 

puzzle systems.

• We provide an efficient 3-round PoWorK

construction.

• We motivate the applicability of PoWorKs

via real-world and theoretic applications.



Future directions

• Alternative PoWorK constructions.

• Relation of PoWorKs with other 

complexity classes.

• Applications of PoWorKs in real-world 

scenarios.

• Puzzle system instantiations.
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