Attacks and Security Proofs of
EAX-Prime

Kazuhiko Minematsu, NEC Corporation

Stefan Lucks, Bauhaus-Universitat Weimar
Hiraku Morita, Nagoya University
Tetsu Iwata, Nagoya University

Fast Software Encryption 2013, March 10 -- 13, 2013, Singapore

Authenticated Encryption (AE)

e Authentication + Encryption
* Prevents eavesdropping and forgery

* Widely used in practice

— Internet (Wifi, SSL/TLS), storage, mobile, satellite,
and many more

EAX-Prime (EAX')

e AE based on AES
e Defined at ANSI C12.22

— Smart grid / Smart meter Protocol
— also appears at IEEE 1703 and M(C1222 (Canada)
— proposed to NIST in 2011

* Some real products, e.g. smart meters and
their management systems

EAX and EAX-Prime

e EAX-Prime is derived from EAX

 EAX

— developed by Bellare, Rogaway, and Wagner at
FSE 2004

— has a proof of security
 EAX-Prime
— modified version of EAX

— some “optimizations” : reducing # of blockcipher
calls and the size of memory

— no formal analysis

Our Results

« Security of EAX-Prime is sharply separated
w.r.t. cleartext (an input variable), as we show ;

1. When cleartext is one-block, effective attacks
exist

— Forgery, distinguisher, and plaintext recovery

2. When cleartext is more-than-one-block, it has

a proof of security based on the standard
assumption

(Original) EAX Encryption

e Enc-then-Auth, by CTR and CMAC

« CMAC is tweaked (creating 3 variants)

N (nonce)

v

CMAC®©

I

M (plaintext)

H (header)

N (IV for CTR)

A 4

CTR mode

Input (N,M,H)
Output (C,T)

!

C (ciphertext)

!

CMAC®

y

CMACH)

¢

T (tag)

EAX-Prime Encryption

N (cleartext) M (plaintext)
!

CMAC[D]
| !

N (IV for CTR) |—> CTR' mode

!

C (ciphertext)
Input (N,M) l

Output (C,T)

CMAC[Q]

T (tag) | (truncated to 32 bits)

EAX-Prime Encryption

Cleartext combines Nonce and Header

N (cleartext) inte Modified counter mode :

v

Some bits of the initial counter

CMACID]

value are set to 0 to suppress carry-

!

bit propagation

N (IV for CTR) p—>

Input (N,M)
Output (C,T)

Different tweaking method of CMAC

T (tag) | (truncated to 32 bits) 8

Tweaking Method of CMAC
« CMAC[D] and CMAC[Q]

— 2 variants
— Slightly more efficient than the original
— ... and makes our attacks possible

CMAC (NIST SP800-38B)

o CBC-MAC w/ last masking 2L or 4L
o L =E/O)
o 2L : Doubling in GF(2"), 4L : Twice Doubling

MI1] M[m-1] M[m] || 10...0

2L (IM[m[=n)

or

4L (otherwise)
E¢ o0 o E¢ E¢ L = E,(O")

- |

CMAC (M)

Tweaked CMAC in EAX

e 3 variants with CMACtweak = CMAC(tweak || X),
tweak = 0,1,2 (in n bits)

— E(tweak) can be cached as initial mask
Tweak

t=0orlor2 M[1] I\/I[m 1] M[m]|| 10...0

|M[m| n)
otherW|se)
EK EK ® 0 O E EK =

CMAC, O(M

Tweaked CMAC in EAX-Prime

e 2 variants with CMAC[D] and CMAC|Q]
(tweak = D, Q)

e Use D=2L or Q=4L as initial mask

Tweakt M[1] M[m-1] M[m] || 10...0
2L ((IM[m|=n)
or
4L) 4L (otherwise)
o0 0 EK L = EK(On)

- |

CMAC[t](M)

Observation

« CMACID] and CMAC[Q] fail to provide
(independent) PRFs

* In case [M| < n;

CMACI[D] when [M4|=n CMACIQ] when 0<|M,|<n
M, M.,||10...0
D séx— D Q ﬂ%}* Q
E¢ Ex
E (M) Ex(M;]|10...0)

Making M; = M,||10...0 yields the same outputs ->
unlikely for two independent PRFs

Forgery Attack

Throw (N,C,T) to the
decryption oracle;

— IN| =n,|C| < n
— C|[10..0 = N
T =03

always successful
No enc-query

Dec-oracle sees
random plaintext,
giving a great
sE)ecuIation for attack
(thanks to Greg Rose)

Variants
— [N|<n & |C|=n etc.

—————————

N (cleartext) : M (plaintext) !

A af

| |

I

CMACID] :

I
EK(N)V v __.
N IV for CTRfF === - > CTR' mode !

E(

——— -

I
Y

C (ciphertext)

!

CMACIQ]
C||10...0)=E(N)

032=1T (tag)

Distinguishing Attack

One enc-query to
distinguish the response
from random

— [N =n, N = 10.0

— M| = 0 (empty) E((N)=E((10...0) {
N (IV for CTR)

See if T = 0%
almost always successful

Variants
— short M is also attackable

N (cleartext)

!

CMAC[D]

> CTR' mode

M (plaintext)

A 4

!

empty strings:

- C (ciphertext)

!

CMAC[Q]

E,(C||10...0)=E(10...0)

032=1T (tag)

(Chosen-Ciphertext) Plaintext Recovery

e Scenario
— Eve eavesdrops (N*, C*, T*)
— corresponding M* is unknown

e Eve can ask other (N, C, T) to Bob (Dec-oracle)
 The goal is to find (a part of) M*

K (N*, C*, T%) K
M* 1 Alice > Bob

<X (N,C,T)

(Chosen-Ciphertext) Plaintext Recovery

1. Suppose (N*,C*T%)

SatiSﬁeS |N*|:n, |C*|<ﬂ N* (cleartext) M (plaintext)
2. Do Forgery attack with |
N:N*, C S.t. C”lOO = N* CMAC[D]
3. Dec-oracle returns M E (N9 |
4.KS = C D M is the N (IV for CTR] > CTR mode
keystream for N* |
5. M* is recoverd as KS @ C* C (Cipfiertext)
o If |C*.|2n, it still recovers the first CMAC[Q]

|C| bits of M*

. - E¢(Cl|10...0)=E(N¥)

« Succeeds with probability 1 é

032=|T (tag)

Applicability to ANSI C12.22

All attacks require one-block cleartext (|[N| < n)
Is this possible in C12.22 7?
We have no clear answer (despite some efforts)

Cleartext-length check is needed anyway
— for both encryption and decryption sides

Applicability to ANSI C12.22

All attacks require one-block cleartext (|[N| < n)
Is this possible in C12.22 7?
We have no clear answer (despite some efforts)

Cleartext-length check is needed anyway
— for both encryption and decryption sides

Is EAX-Prime secure if [N| > n is guaranteed ?

-> Yes, it is provably secure

Problem Setting

« Adversary queries to :

— Enc-oracle : takes (N,M), returns (C,T)
— Dec-oracle : takes (N, C, T), returns M or L

o Cleartext has at least two blocks (N|, [N| > n)

* Any enc-query (N,M) is allowed provided N is unique (nonce-

respecting)

« dec-query has no such limitation

(N, M)
Adversary P
(CT)

N,

C, T

Enc-oracle

(
Con:

M or L

Dec-oracle

20

Security notions

 Two (standard) notions

 Privacy (PRIV) : ciphertexts are pseudorandom
— Distinguish two Enc-oracles, EAX" and random ($)

« Authenticity (AUTH) : a successful forgery is hard

— Receiving (non-trivial) #.1 response from Dec-oracle

EAX' EAX'
Enc-o Dec-0

N N (win if #L1)

"EAX" or

Security Bounds

e QOur results (w/ n-bit random perm., T-bit tag)
* Privacy

1852 . EAX' specifies T = 32
PR (A) < —opriv
EAX'[Perm(n),7] — omn O,y - TOtal blocks of N .and M

« Authenticity

1852 q q, : # of dec. queries
auth auth v _
AdVEAX'r [Perm(n),] (A) S om + 2T O.uth - Total blocks of N, M, N, and

C

Proof Strategy

. Redefine EAX' as a mode of "OMAC-
e(xtension)”

* a pair of functions (OMAC-¢e(0), OMAC-e(1))
. Prove OMAC-e is a pair of (computationally)
Independent PRFs

* Most technical part

. Prove the security of EAX" with perfect
OMAC-e (pair of random. functions)

— Following the original EAX proof [BRWO04], with
some techniques from OMAC proofs [Iwata-
Kurosawa 03a, 03b]

OMAC-¢e(0)

e Uses an n-bit random permutation P and a random value U

 Computes CMACID] and CTR' (key stream computation,
given the output length)

e Input >n bits

N1 NIm-1 N 10...0

[1] [m-1] [ml | d (specify the output length)

2L 2L or 4L
p oo o P P CTR" Enc
v
| —| Ag +1 oo 0o—> +]
random —1
U —{p) I I

L = P(O") i P i
Ao ;2 bits off ‘1' l' \i'

v
N&U Key Stream

OMAC-e(1)

« Computes CMAC[Q]
e Use the same U as in OMAC-e(0)

C[1] C[m-1] C[m] || 10...0
4L—>$ _)$ 2L or 4L
P| eee P P
- u—P
v
Teou

e OMAC-e can simulate EAX-Prime (U is canceled out)

e Disclaimer : the use of U is missing in the pre-proceeding (thus
buggy).
Proceeding version (and a forthcoming full version) will fix this

25

Decomposition of OMAC-e

* We need to prove "OMAC-e is a pair of
random functions”

N[1] N[2] N[3] || 10
2L~>$ 4L
p p p d=2

l
—
T

Decomposition of OMAC-e

* We need to prove "OMAC-e is a pair of
random functions”

* For this we introduce helper random variables

N[1] N[2] N[3] || 10
Rnd
2L~>€F e 4L @ Rnd,
[|
Rnd—>P /Rnd,—G oo N ot _l
U *E} P P
! ! }
N& U Key Stream

Decomposition of OMAC-e

» and decompose it into a set of ten functions, Q =
{Q;..... Q) including the helper variables

* Proving "Q = set of rand. functions” is rather
easy

N[1] N[2] N[3] | 10
Q Q 452
|
Q.
! | l

N& U Key Stream

Finalization

e OMAC-e is simulatable

by Q

* Q is indistinguishable
from R (set of rand.
functions)

« OMAC-e simulated by
R is indistinguishable
from a pair of rand.
functions

N (nonce)

CMAC

N (IV for CTR)

M (plaintext)

mrmn

OMAC-e

C (ciphertext)

29

Finalization

OMAC-e is simulatable
by Q

Q is indistinguishable [N (nonce) M (plaintext)
from R (set of rand.
functions)

OMAC-e simulated by
R is indistinguishable
from a pair of rand.
functions

AE by a pair of rand. FRano}om2
functions behaves 2150
ideally, the proof goes...

Random Function 1

C (ciphertext)

How to safely use [IN| £ n?

» Suppose we do not want to change the
algorithm of EAX-Prime

e Method 1. Prepend to N, e.g. O"||N instead of N

Ny,
N M
l | | |
EAX-Prime [E,] —> EAX-Prime [E,]
| | | |
C T C T

How to safely use [IN| £ n?

 Method 2. Use two blockcipher keys, K and K’
— E((X) for [N| > n, otherwise E.(X) w/ prepending

to N

» Independent keys (safer, but expensive)

« K' generated from K @ const (e.g., const = 1K)
— the choice of constant needs cares

— very limited form of RK-security is required

N M

| |
EAX-Prime [E,]

| |

C T

—

N M O"|[N M
| | | |
EAX-Prime [E,] EAX-Prime [Ey/]
| | | |
C T C T
IN| > n IN| <n

Two keys, K and K’

How to safely use [IN| £ n?
 Method 3. Use tweakable blockcipher with

additional independent n-bit key, L

— E(X) for [N| >n, otherwise E (X) = E(X @ L) w/

prepending to N

N M
|

EAX-Prime [E,] —
|
C T

N M "IN M
! | ! |
EAX-Prime [E,] EAX-Prime [E]
| | | !
C T C T
IN| > n IN| <n

Two keys, Kand L

* Each method has good and bad points

l essons learned

* A seemingly small change can result in fatal
consequences

— A repeated problem in real-world crypto...

 CMAC is one PRF : generating multiple PRFs
needs cares

— EAX employs a simple and secure method

* The importance of security proofs

— Our proof shows that cleartext length check is

sufficient for secure (though cumbersome) use of
EAX-Prime

via http://nekofont.upat.jp/ 35

via http://nekofont.upat.jp/ 36

