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 (t-out-of-n) Secret Sharing

secret:

shares:

s

s1 s2 … sn

Privacy: any t shares give no information on s

Reconstructability: any t+1 shares uniquely determine s

s1 s2 … st ?

s1 s2 … st+1 s



 Shamir’s Secret Sharing Scheme [Sha79]

secret:

shares:

s ! F

s1 = f(x1) … sn = f(xn)

Privacy and reconstructability follow from Lagrange interpolation

f(X) = s+a 1X+...+atX
t ! F[X]



 Shamir’s Secret Sharing Scheme [Sha79]

secret:

shares:

s ! F

s1 = f(x1) … sn = f(xn)

Privacy and reconstructability follow from Lagrange interpolation

f(X) = s+a 1X+...+atX
t ! F[X]

Here and in general: 
 reconstructability requires correct shares



 Robust Secret Sharing

secret:

shares:

s

s1 s2 … sn

Privacy: any t shares give no information on s
s1 … st ?

Reconstructability: any t+1 shares uniquely determine s
s1 … st+1 s



 Robust Secret Sharing

secret:

shares:

s

s1 s2 … sn

Privacy: any t shares give no information on s
s1 … st ?

ˆs1̂

Robust reconstructability: 
 the set of all n  shares determines s, even if t of them are faulty

… st+1 sst sn…

Note: 
assume dealer to be honest
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servers
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= ?
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 (Im)possibility

t

easy tricky impossible

0 n/3 n/2 n

plain Shamir sharing 
plus RS decoding, 

no error probability
additional checking data needed,
positive error probability: 2"k



 (Im)possibility

t

easy tricky impossible

0 n/3 n/2 n

plain Shamir sharing 
plus RS decoding, 

no error probability
additional checking data needed,
positive error probability: 2"k

This work: n = 2t+1, with unconditional security
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Rabin & Ben-Or (1989):
Overhead in share size:     O(k·n·logn)   
Computational complexity:   poly(k,n)      �  

Cramer & F (2001), based on Cabello, Padró & Sáez (1999), 
generalized by Kurosawa & Suzuki (2009):

Overhead in share size:     O(k+n)        �   (lower bound: !(k))
Computational complexity:   exp(n)         

Our new scheme:
Overhead in share size:     O(k+n·logn)  �
Computational complexity:   poly(k,n)      �  
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Difficulties of the proof

Conclusion
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 The (Simple) Case n = 3t+1

s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… …s2t+1 sn"t+1ˆst+1 st+2 …

t+1 correct shares 
-> determines f

r=t redundant 
correct shares

e=t faulty shares

Reed-Solomon decoding: If e # r (satisfied here) then
f is uniquely determined from s1, . . . ,sn

f can be efficiently computed (Berlekamp-Welch)
ˆ
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 The Rabin & Ben-Or Scheme (n = 2t+1)
s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… si sj…
"11

⋮ 
⋮
⋮

"1n

y11

⋮ 
⋮
⋮

y1n

"i1

⋮ 
⋮
"ij

⋮
"in

yi1

⋮ 
⋮
yij

⋮
yin

"j1

⋮ 
"ji

⋮
⋮
"jn

yj1

⋮ 
yji

⋮
⋮
yjn

"n1

⋮ 
⋮
⋮

"nn

yn1

⋮ 
⋮
⋮

ynn

Sharing phase:
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 The Rabin & Ben-Or Scheme (n = 2t+1)
s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… si sj…
"11
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⋮
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yij = MAC"ji(si) 

Sharing phase:

MAC security: for any si $ si and yij : P[yij = MAC"ji(si)] # #.

Example: "ij = ($ij,%ij) ! F2 and yij = MAC"ji(si) = $ij ·si + %ij. 

For error probability # # 2"k : 
bit size |"ij|,|yij| % k

overhead per share (above Shamir share): !(k·n) 

ˆ ˆ ˆ ˆ
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… si sj…
"11

⋮ 
⋮
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Reconstruction phase:
1. For every share si : accept si  iff it is approved by % t+1 players,

                             (meaning #{j | yij = MAC"ji(si)} % t+1 )
2.Reconstruct s using the accepted shares si .

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si) 

s1=f(x1)
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s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si) 

s1=f(x1)
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s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si) 

s1=f(x1)

Use small tags and keys |"ij|,|yij| = Õ(k/n +1)  (instead of O(k))
Gives: overhead per share: n·Õ(k/n +1) = Õ(k +n)

Problem: 
MAC has weak security
incorrect shares may be approved by some honest players
Rabin & Ben-Or reconstruction fails 

Need: better reconstruction procedure
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 s2 is approved by # t honest players (as player 3 is dishonest)
    => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2 

Our new reconstruction: will rejects s2 

Example: Say that 
 {j | y1j = MAC"j1(s1)} = {1,...,n} 
 {j | y2j = MAC"j2(s2)} = {1,...,t+1} 
 {j | y3j = MAC"j3(s3)} = {2,...,t+1} 
  ...

 How to Reconstruct

-> accept s1

-> accept s2

-> reject s3

Rabin & Ben-Or reconstruction:
 Accept every share si that is approved 
 by t+1 players. 

Our new reconstruction:
 Accept every share si that is approved 
 by t+1 players with accepted shares.



 s2 is approved by # t honest players (as player 3 is dishonest)
    => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2 

Our new reconstruction: will rejects s2 

Example: Say that 
 {j | y1j = MAC"j1(s1)} = {1,...,n} 
 {j | y2j = MAC"j2(s2)} = {1,...,t+1} 
 {j | y3j = MAC"j3(s3)} = {2,...,t+1} 
  ...

 How to Reconstruct

-> accept s1

-> accept s2

-> reject s3

Rabin & Ben-Or reconstruction:
 Accept every share si that is approved 
 by t+1 players. 

Our new reconstruction:
 Accept every share si that is approved 
 by t+1 players with accepted shares.

 Plus: Reed-Solomon decoding. 
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(Init) Set Good := {1,...,n}

(Loop) For every i !Good :  
             if #{j  !Good | yij = MAC"ji(si)} # t then
          - set Good := Good ∖{i} 
          - redo (Loop)

(Dec)  Set s:= Reed-Solomon({si }i !Good})

 Our New Reconstruction Procedure

Main Theorem. If MAC is #-secure then our scheme is &-robust with 

                       & # e·((t+1)·#)(t+1)/2            (where e=exp(1)).  

Corollary. Using MAC with |"ij|,|yij| = O(k/n +logn) gives 

& # 2"!(k) . 
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 What Makes the Proof Tricky

In Rabin & Ben-Or: an incorrect share for every dishonest player

Here: some dishonest players may hand in correct shares

1. Optimal strategy for dishonest players is unclear

Such a passive dishonest player: 
stays in Good  
can support (i.e. vote for) bad shares

The more such passive dishonest players: 
the easier it gets for bad shares to survive  
the more bad shares have to survive to fool RS decoding
(# bad shares ! # correct shares of dishonest players)

Optimal trade-off: unclear
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 What Makes the Proof Tricky

Whether si gets accepted depends on whether sj gets accepted ...

2. Circular dependencies

ˆ ˆ

... and vice versa

Cannot analyze individual bad shares

If we try, we run into a circularity
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