Unconditionally-Secure Robust Secret Sharing

with Compact Shares

Serge Fehr
CWI Amsterdam
www.cwi.nl/~fehr

Alfonso Cevallos	Rafail Ostrovsky	Yuval Rabani
Leiden University	UCLA	Hebrew University of Jerusalem

(t-out-of-n) Secret Sharing

secret:

shares:
$s_{1} \quad s_{2}$
...
s_{n}

* Privacy: any t shares give no information on s

$$
s_{1} \quad s_{2} \ldots s_{t} \quad \rightarrow \text { ? }
$$

Reconstructability: any $t+1$ shares uniquely determine s

$$
s_{1} \quad s_{2} \quad \cdots \quad s_{t+1} \quad \Longrightarrow s
$$

Shamir's Secret Sharing Scheme [Sha79]

secret:

shares: $\quad s_{1}=f\left(x_{1}\right) \quad \ldots \quad s_{n}=f\left(x_{n}\right)$

* Privacy and reconstructability follow from Lagrange interpolation

Shamir's Secret Sharing Scheme [Sha79]

secret:

shares: $\quad s_{1}=f\left(x_{1}\right) \quad \ldots \quad s_{n}=f\left(x_{n}\right)$

* Privacy and reconstructability follow from Lagrange interpolation
* Here and in general:
reconstructability requires correct shares

Robust Secret Sharing

secret:

shares:
$s_{1} \quad s_{2}$
...
s_{n}

Privacy: any t shares give no information on s

Reconstructability: any $t+1$ shares uniquely determine s

$$
s_{1} \quad \cdots \quad s_{t+1} \quad \longrightarrow s
$$

Robust Secret Sharing

secret:
shares:

$s_{1} \quad s_{2}$

Note:
assume dealer to be honest
s_{n}

* Privacy: any t shares give no information on s

$$
s_{1} \quad \cdots \quad s_{t} \quad \rightarrow \text { ? }
$$

* Robust reconstructability:
the set of all n shares determines s, even if t of them are faulty

$$
\begin{array}{llllll}
\hat{s}_{1} & \cdots & \hat{s}_{t} & s_{t+1} & \cdots & s_{n}
\end{array} \quad \Longrightarrow s
$$

Application: Secure Data Storage

(Im)possibility

(Im)possibility

This work: $n=2 t+1$, with unconditional security

Known Results vs Our Result

\& Rabin \& Ben-Or (1989):

- Overhead in share size: $O(k \cdot n \cdot \log n)$ ()
- Computational complexity: poly(k, n)

Known Results vs Our Result

\& Rabin \& Ben-Or (1989):

- Overhead in share size: $O(k \cdot n \cdot \log n)$ ()
- Computational complexity: poly (k, n)
\& Cramer \& F (2001), based on Cabello, Padró \& Sáez (1999), generalized by Kurosawa \& Suzuki (2009):
- Overhead in share size: $O(k+n)$ (lower bound: $\Omega(k)$)
- Computational complexity: $\exp (n)$

Known Results vs Our Result

\& Rabin \& Ben-Or (1989):

- Overhead in share size: $O(k \cdot n \cdot \log n)$ ©
- Computational complexity: poly (k, n)
\& Cramer \& F (2001), based on Cabello, Padró \& Sáez (1999), generalized by Kurosawa \& Suzuki (2009):
- Overhead in share size: $O(k+n)$ (lower bound: $\Omega(k)$)
- Computational complexity: $\exp (n)$
* Our new scheme:
- Overhead in share size: $O(k+n \cdot \log n) \odot$
- Computational complexity: poly (k, n) ©

Further Outline

\& Introduction\& The (simple) case $t<n / 3$

* The Rabin \& Ben-Or scheme
Our scheme© Difficulties of the proof* Conclusion

The (Simple) Case $n=3 t+1$

$$
s_{1}=f\left(x_{1}\right) \quad \ldots \quad s_{t+1} \quad s_{t+2} \quad \cdots \quad s_{2 t+1} \quad s_{n-t+1} \quad \cdots \quad s_{n}
$$

The (Simple) Case $n=3 t+1$

Reed-Solomon decoding: If $e \leq r$ (satisfied here) then

- f is uniquely determined from $s_{1}, \ldots, \hat{s}_{n}$
- f can be efficiently computed (Berlekamp-Welch)

The Rabin \& Ben-Or Scheme ($n=2 t+1$)

Sharing phase:

$$
s \in \mathbb{F}
$$

$$
f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]
$$

$s_{1}=f\left(x_{1}\right)$

κ_{11}	y_{11}
\vdots	\vdots
\vdots	\vdots
\vdots	\vdots
$\kappa_{1 n}$	$y_{1 n}$

...
S_{i}

$\kappa_{i 1}$	$y_{i 1}$
\vdots	\vdots
\vdots	\vdots
$\kappa_{i j}$	$y_{i j}$
\vdots	\vdots
$\kappa_{i n}$	$y_{i n}$

S_{j}

$\kappa_{j 1}$	$y_{j 1}$
\vdots	\vdots
$\kappa_{j i}$	$y_{j i}$
\vdots	\vdots
\vdots	\vdots
$\kappa_{j n}$	$y_{j n}$

S_{n}

$\kappa_{n 1}$	$y_{n 1}$
\vdots	\vdots
\vdots	\vdots
\vdots	\vdots
$\kappa_{n n}$	$y_{n n}$

The Rabin \& Ben-Or Scheme ($n=2 t+1$)

Sharing phase:

$s \in \mathbb{F}$
$\ldots f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]$
$s_{1}=f\left(x_{1}\right)$

κ_{11}	y_{11}
\vdots	\vdots
\vdots	\vdots
\vdots	\vdots
$\kappa_{1 n}$	$y_{1 n}$

...

The Rabin \& Ben-Or Scheme ($n=2 t+1$)

Sharing phase:

$$
s \in \mathbb{F}
$$

$$
f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]
$$

$s_{1}=f\left(x_{1}\right)$
κ_{11} y_{11} \vdots \vdots \vdots \vdots \vdots \vdots $\kappa_{1 n}$ $y_{1 n}$

© MAC security: for any $\hat{s}_{i} \neq s_{i}$ and $\hat{y}_{i j}: P\left[\hat{y}_{i j}=M A C_{\kappa_{j i}}\left(\hat{s_{i}}\right)\right] \leq \varepsilon$.
Example: $\kappa_{i j}=\left(\alpha_{i j}, \beta_{i j}\right) \in \mathbb{F}^{2}$ and $y_{i j}=M A C_{\kappa_{j i}}\left(s_{i}\right)=\alpha_{i j} \cdot s_{i}+\beta_{i j}$.

* For error probability $\varepsilon \leq 2^{-k}$:
- bit size $\left|\kappa_{i j}\right|,\left|y_{i j}\right| \geq k$
- overhead per share (above Shamir share): $\Omega(k \cdot n)$

The Rabin \& Ben-Or Scheme ($n=2 t+1$)

Sharing phase:

Reconstruction phase:

1. For every share s_{i} : accept s_{i} iff it is approved by $\geq t+1$ players,

$$
\text { (meaning } \#\left\{j \mid y_{i j}=M A C_{\kappa j i}\left(s_{i}\right)\right\} \geq t+1 \text {) }
$$

2. Reconstruct s using the accepted shares s_{i}.

The Rabin \& Ben-Or Scheme ($n=2 t+1$)

Sharing phase:

$s \in \mathbb{F}$
$\ldots f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]$
$s_{1}=f\left(x_{1}\right)$

κ_{11}	y_{11}
\vdots	\vdots
\vdots	\vdots
\vdots	\vdots
$\kappa_{1 n}$	$y_{1 n}$

...

Our New Scheme

Sharing phase:

$s \in \mathbb{F}$

$f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]$

$s_{1}=f\left(x_{1}\right)$	
κ_{11} y_{11} \vdots \vdots \vdots \vdots \vdots \vdots $\kappa_{1 n}$ $y_{1 n}$	

...

Our New Scheme

Sharing phase:

$$
s \in \mathbb{F}
$$

$$
f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]
$$

$s_{1}=f\left(x_{1}\right)$	
κ_{11} y_{11} \vdots \vdots \vdots \vdots \vdots \vdots $\kappa_{1 n}$ $y_{1 n}$	

...

s_{j}

$\kappa_{j 1}$	$y_{j 1}$
\vdots	
$\kappa_{j i n}$	\vdots
\vdots	$y_{j i}$
\vdots	\vdots
$\kappa_{j n}$	$y_{j n}$

© Use small tags and keys $\left|\kappa_{i j}\right|,\left|y_{i j}\right|=\tilde{\mathrm{O}}(k / n+1$) (instead of $\mathrm{O}(k)$)
Gives: overhead per share: $n \cdot \tilde{O}(k / n+1)=\tilde{O}(k+n)$

Our New Scheme

Sharing phase:

$$
f(X)=s+a_{1} X+\ldots+a_{t} X^{t} \in \mathbb{F}[X]
$$

$s_{1}=f\left(x_{1}\right)$
κ_{11} y_{11} \vdots \vdots \vdots \vdots \vdots \vdots $\kappa_{1 n}$ $y_{1 n}$

© Use small tags and keys $\left|\kappa_{i j}\right|,\left|y_{i j}\right|=\tilde{O}(k / n+1)$ (instead of $\mathrm{O}(k)$)
Gives: overhead per share: $n \cdot \tilde{O}(k / n+1)=\tilde{O}(k+n)$
\& Problem:

- MAC has weak security
- incorrect shares may be approved by some honest players
- Rabin \& Ben-Or reconstruction fails

Our New Scheme

Sharing phase:

© Use small tags and keys $\left|\kappa_{i j}\right|,\left|y_{i j}\right|=\tilde{O}(k / n+1)$ (instead of $\mathrm{O}(k)$)
Gives: overhead per share: $n \cdot \tilde{O}(k / n+1)=\tilde{O}(k+n)$

* Problem
- MAC Need: better reconstruction procedure
- incorrect shares may be approved by some honest players
- Rabin \& Ben-Or reconstruction fails

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\}$

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- $\left\{j \mid y_{2 j}=M A C_{\kappa_{j 2}}\left(s_{2}\right)\right\}=\{1, \ldots, t+1\}$

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- $\left\{j \mid y_{2 j}=M A C_{\kappa_{j 2}}\left(s_{2}\right)\right\}=\{1, \ldots, t+1\} \quad \rightarrow$ accept s_{2}

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- $\left\{j \mid y_{2 j}=M A C_{\kappa_{j 2}}\left(s_{2}\right)\right\}=\{1, \ldots, t+1\} \quad \rightarrow$ accept $s 2$
- $\left\{j \mid y_{3 j}=M A C_{\kappa_{j 3}}\left(s_{3}\right)\right\}=\{2, \ldots, t+1\}$

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- $\left\{j \mid y_{2 j}=M A C_{\kappa_{j 2}}\left(s_{2}\right)\right\}=\{1, \ldots, t+1\} \quad \rightarrow$ accept $s 2$
- $\left\{j \mid y_{3 j}=M A C_{\kappa_{j 3}}\left(s_{3}\right)\right\}=\{2, \ldots, t+1\} \quad \rightarrow$ reject s_{3}

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- $\left\{j \mid y_{2 j}=M A C_{\kappa_{j 2}}\left(s_{2}\right)\right\}=\{1, \ldots, t+1\} \quad \rightarrow$ accept
- $\left\{j \mid y_{3 j}=M A C_{\kappa_{j 3}}\left(s_{3}\right)\right\}=\{2, \ldots, t+1\} \quad \rightarrow$ reject s_{3}
\& s_{2} is approved by $\leq t$ honest players (as player 3 is dishonest) => s2 stems from dishonest player

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- $\left\{j \mid y_{2 j}=M A C_{\kappa_{j 2}}\left(s_{2}\right)\right\}=\{1, \ldots, t+1\} \quad \rightarrow$ accept s_{2}
- $\left\{j \mid y_{3 j}=M A C_{\kappa_{33}}\left(s_{3}\right)\right\}=\{2, \ldots, t+1\} \quad \rightarrow$ reject s_{3}
\& S_{2} is approved by $\leq t$ honest players (as player 3 is dishonest) => S2 stems from dishonest player
\& Rabin \& Ben-Or reconstruction: accepts s2

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- $\left\{j \mid y_{2 j}=M A C_{\kappa_{j 2}}\left(s_{2}\right)\right\}=\{1, \ldots, t+1\} \quad \rightarrow$ accept s_{2}
- $\left\{j \mid y_{3 j}=M A C_{\kappa_{33}}\left(s_{3}\right)\right\}=\{2, \ldots, t+1\} \quad \rightarrow$ reject s_{3}
\& S_{2} is approved by $\leq t$ honest players (as player 3 is dishonest) => S2 stems from dishonest player
\& Rabin \& Ben-Or reconstruction: accepts 52
* Our new reconstruction: will rejects

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- \{j Rabin \& Ben-Or reconstruction:
Accept every share s_{i} that is approved by $t+1$ players.
\& s_{2} is
Our new reconstruction:
\& Rabi
Accept every share s_{i} that is approved by $t+1$ players with accepted shares.
* Our new recunsmectron: will rejects

How to Reconstruct

* Example: Say that
- $\left\{j \mid y_{1 j}=M A C_{\kappa_{j 1}}\left(s_{1}\right)\right\}=\{1, \ldots, n\} \quad \rightarrow$ accept s_{1}
- \{j Rabin \& Ben-Or reconstruction:Accept every share s_{i} that is approved by $t+1$ players.

Our new reconstruction:
Accept every share s_{i} that is approved
\& Rabi by $t+1$ players with accepted shares.
\& Our
Plus: Reed-Solomon decoding.

Our New Reconstruction Procedure

(Init) Set Good $:=\{1, \ldots, n\}$
(Loop) For every $i \in$ Good:

$$
\begin{aligned}
& \text { if } \#\left\{j \in G o o d \mid y_{i j}=M A C_{\kappa_{j i}}\left(s_{i}\right)\right\} \leq t \text { then } \\
& \text { - set Good }:=G \operatorname{ood} \backslash\{i\} \\
& \text { - redo (Loop) }
\end{aligned}
$$

(Dec) Set $s:=$ Reed-Solomon $\left.\left(\left\{s_{i}\right\}_{i \in G o o d}\right\}\right)$

Our New Reconstruction Procedure

(Init) Set Good $:=\{1, \ldots, n\}$
(Loop) For every $i \in G o o d$:

$$
\begin{aligned}
& \text { if } \#\left\{j \in G o o d \mid y_{i j}=M A C_{\kappa j i}\left(s_{i}\right)\right\} \leq t \text { then } \\
& \text { - set Good }:=\text { Good } \backslash\{i\} \\
& \text { - redo (Loop) }
\end{aligned}
$$

$($ Dec $)$ Set $s:=$ Reed-Solomon $\left.\left(\left\{s_{i}\right\}_{i \in G o o d}\right\}\right)$

Our New Reconstruction Procedure

(Init) Set Good:=\{1,..n\}
(Loop) For every $i \in$ Good:

$$
\begin{aligned}
& \text { if } \left.\# j \in \text { Good }) y_{i j}=M A C_{\kappa_{j i}}\left(s_{i}\right)\right\} \leq t \text { then } \\
& \text { - set Good }:=\text { Good } \backslash\{i\} \\
& \text { - redo (Loop) }
\end{aligned}
$$

(Dec) Set $s:=$ Reed-Solomon $\left.\left(\left\{s_{i}\right\}_{i \in G o o d}\right\}\right)$

Our New Reconstruction Procedure

(Init) Set Good $:=\{1, \ldots, n\}$
(Loop) For every $i \in G o o d$:

$$
\begin{aligned}
& \text { if } \left.\# j \in G o o d D y_{i j}=M A C_{\kappa j i}\left(s_{i}\right)\right\} \leq t \text { then } \\
& \text { - } \operatorname{setGood}:=\operatorname{Good} \backslash\{i\} \\
& \text { - redo (Loop) }
\end{aligned}
$$

(Dec) Set $s:=$ Reed-Solomon $\left.\left(\left\{s_{i}\right\}_{i \in G o o d}\right\}\right)$

Our New Reconstruction Procedure

$$
\begin{aligned}
& \text { (Init) } \text { Set Good }:=\{1, \ldots, n\} \\
& \text { (Loop) For every } i \in G o o d: \\
& \text { if } \left.\#(j \in G o o d) y_{i j}=M A C_{\kappa_{j i}}\left(s_{i}\right)\right\} \leq t \text { then } \\
& \\
& - \text { setGood }:=\text { Good } \backslash i\} \\
& \\
& - \text { redo (Loop) } \\
& \text { (Dec) Set } \left.s:=\text { Reed-Solomon }\left(\left\{s_{i}\right\}_{i \in G o o d}\right\}\right)
\end{aligned}
$$

Our New Reconstruction Procedure

(Init) Set Good $:=\{1, \ldots, n\}$
(Loop) For every $i \in G o o d$:

$$
\begin{aligned}
& \text { if }\left.\# j \in \text { Good }) y_{i j}=M A C_{\kappa_{j i}}\left(s_{i}\right)\right\} \leq t \text { then } \\
&- \text { setGood }:=\text { Good } \backslash i\} \\
&- \text { redo (Loop)) } \\
&\text { (Dec) Set } \left.s:=\text { Reed-Solomon }\left(\left\{s_{i}\right\}_{i \in G o o d}\right\}\right)
\end{aligned}
$$

Main Theorem. If MAC is ε-secure then our scheme is δ-robust with

$$
\left.\delta \leq e \cdot((t+1) \cdot \varepsilon)^{(t+1) / 2} \quad \quad \text { (where } e=\exp (1)\right)
$$

Our New Reconstruction Procedure

```
(Init) Set Good \(:=\{1, \ldots, n\}\)
(Loop) For every \(i \in G o o d\) :
    if \(\# j \in\) Good \(\left.) y_{i j}=M A C_{\kappa j i}\left(s_{i}\right)\right\} \leq t\) then
    - set Good: \(=\) Good \(\backslash\{i\}\)
    - redo (Loop)
(Dec) Set \(s:=\) Reed-Solomon \(\left.\left(\left\{s_{i}\right\}_{i \in G o o d}\right\}\right)\)
```

Main Theorem. If MAC is ε-secure then our scheme is δ-robust with

$$
\left.\delta \leq e \cdot((t+1) \cdot \varepsilon)^{(t+1) / 2} \quad \quad \text { (where } e=\exp (1)\right)
$$

Corollary. Using MAC with $\left|\kappa_{i j}\right|,\left|y_{i j}\right|=O(k / n+\log n)$ gives

$$
\delta \leq 2^{-\Omega(k)}
$$

What Makes the Proof Tricky

What Makes the Proof Tricky

1. Optimal strategy for dishonest players is unclear

* In Rabin \& Ben-Or: an incorrect share for every dishonest player
\& Here: some dishonest players may hand in correct shares

What Makes the Proof Tricky

1. Optimal strategy for dishonest players is unclear

* In Rabin \& Ben-Or: an incorrect share for every dishonest player
\& Here: some dishonest players may hand in correct shares
* Such a passive dishonest player:
- stays in Good
- can support (i.e. vote for) bad shares
* The more such passive dishonest players:
- the easier it gets for bad shares to survive
- the more bad shares have to survive to fool RS decoding (\# bad shares \geq \# correct shares of dishonest players)
* Optimal trade-off: unclear

What Makes the Proof Tricky

2. Circular dependencies

* Whether $\hat{s_{i}}$ gets accepted depends on whether $\hat{s_{j}}$ gets accepted ...

What Makes the Proof Tricky

2. Circular dependencies

* Whether $\hat{s_{i}}$ gets accepted depends on whether $\hat{s_{j}}$ gets accepted ...
© ... and vice versa
- Cannot analyze individual bad shares
* If we try, we run into a circularity

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wlog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase $(\mathcal{P}, \mathcal{H} \subseteq \mathcal{S})$

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wlog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase $(\mathcal{P}, \mathcal{H} \subseteq \mathcal{S})$

Observations:

- Error probability given by $\delta=P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]$
- $\delta=0$ if $|\mathcal{A}| \leq|\mathcal{P}|$. Thus: may assume $a:=|\mathcal{A}|>t / 2$

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wlog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase $(\mathcal{P}, \mathcal{H} \subseteq \mathcal{S})$

Observations:

- Error probability given by $\delta=P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]$
- $\delta=0$ if $|\mathcal{A}| \leq|\mathcal{P}|$. Thus: may assume $a:=|\mathcal{A}|>t / 2$

Actual proof:

$$
P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]=\sum_{\ell=|\mathcal{P}|+1}^{a} P[|\mathcal{A} \cap \mathcal{S}|=\ell]
$$

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wlog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase $(\mathcal{P}, \mathcal{H} \subseteq \mathcal{S})$

Observations:

- Error probability given by $\delta=P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]$
- $\delta=0$ if $|\mathcal{A}| \leq|\mathcal{P}|$. Thus: may assume $a:=|\mathcal{A}|>t / 2$

Actual proof:

$$
\begin{aligned}
& P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]=\sum_{\ell=|\mathcal{P}|+1}^{a} P[|\mathcal{A} \cap \mathcal{S}|=\ell] \\
& \quad \leq \sum_{\ell} P\left[\exists \mathcal{A}^{\prime} \in\binom{\mathcal{A}}{\ell} \forall i \in \mathcal{A}^{\prime} \quad \exists \mathcal{H}^{\prime} \in\binom{\mathcal{H}}{a-\ell+1} \forall j \in \mathcal{H}^{\prime}: y_{i j}=M A C_{\kappa_{j i}}\left(\hat{s}_{i}\right)\right]
\end{aligned}
$$

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wlog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase $(\mathcal{P}, \mathcal{H} \subseteq \mathcal{S})$

Observations:

- Error probability given by $\delta=P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]$
- $\delta=0$ if $|\mathcal{A}| \leq|\mathcal{P}|$. Thus: may assume $a:=|\mathcal{A}|>t / 2$

Actual proof:

$$
\begin{array}{ll}
P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]=\sum_{\ell=|\mathcal{P}|+1}^{a} P[|\mathcal{A} \cap \mathcal{S}|=\ell] \quad P[\ldots] \leq \varepsilon \\
& \leq \sum_{\ell} P\left[\exists \mathcal{A}^{\prime} \in\binom{\mathcal{A}}{\ell} \forall i \in \mathcal{A}^{\prime} \quad \exists \mathcal{H}^{\prime} \in\binom{\mathcal{H}}{a-\ell+1} \forall j \in \mathcal{H}^{\prime}{ }_{\mu_{i j}=M A C_{\boldsymbol{\kappa}_{j i}}\left(\hat{s_{i}}\right)}\right)
\end{array}
$$

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wlog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase $(\mathcal{P}, \mathcal{H} \subseteq \mathcal{S})$

Observations:

- Error probability given by $\delta=P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]$
- $\delta=0$ if $|\mathcal{A}| \leq|\mathcal{P}|$. Thus: may assume $a:=|\mathcal{A}|>t / 2$

Actual proof:

$$
\begin{aligned}
& P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]=\sum_{\ell=|\mathcal{P}|+1}^{a} P[|\mathcal{A} \cap \mathcal{S}|=\ell] \\
& P[. . .] \leq \varepsilon \\
& \leq \sum_{\ell} P\left[\exists \mathcal{A}^{\prime} \in\binom{\mathcal{A}}{\ell} \forall i \in \mathcal{A}^{\prime} \quad \exists \mathcal{H}^{\prime} \in\binom{\mathcal{H}}{a-\ell+1} \forall j \in \mathcal{H}^{\prime} \quad \begin{array}{l}
y_{i j}=M A C_{\kappa_{j i}}\left(\hat{s_{i}}\right)
\end{array}\right] \\
& \leq \sum_{\ell} \sum_{\mathcal{A}^{\prime} \in\binom{(}{\ell}} P\left[\forall i \in \mathcal{A}^{\prime} \quad \exists \ldots \forall \ldots\right]
\end{aligned}
$$

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase $(\mathcal{P}, \mathcal{H} \subseteq \mathcal{S})$

Observations:

- Error probability given by $\delta=P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]$
- $\delta=0$ if $|\mathcal{A}| \leq|\mathcal{P}|$. Thus: may assume $a:=|\mathcal{A}|>t / 2$

Actual proof:

$$
\begin{aligned}
& P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]=\sum_{\ell=|\mathcal{P}|+1}^{a} P[|\mathcal{A} \cap \mathcal{S}|=\ell] \\
& P[. . .] \leq \varepsilon \\
& \leq \sum_{\ell} P\left[\exists \mathcal{A}^{\prime} \in\binom{\mathcal{A}}{\ell} \forall i \in \mathcal{A}^{\prime} \quad \exists \mathcal{H}^{\prime} \in\binom{\mathcal{H}}{a-\ell+1} \forall j \in \mathcal{H}^{\prime} \xrightarrow{y_{i j}=M A C_{\kappa_{j i}}\left(\hat{s_{i}}\right)}\right] \\
& \leq \sum_{\ell} \sum_{\mathcal{A}^{\prime} \in\binom{(1)}{\ell}}\left[\forall i \in \mathcal{A}^{\prime} \exists \ldots \forall \ldots\right] \leq \sum_{\ell} \sum_{\mathcal{A}^{\prime} \in\left(\begin{array}{l}
(,)
\end{array}\right) \prod_{i \in \mathcal{A}^{\prime}} P[\exists \ldots \forall \ldots] \leq \ldots}
\end{aligned}
$$

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase $(\mathcal{P}, \mathcal{H} \subseteq \mathcal{S})$

Observations:

- Error probability given by $\delta=P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]$
- $\delta=0$ if $|\mathcal{A}| \leq|\mathcal{P}|$. Thus: may assume $a:=|\mathcal{A}|>t / 2$

Actual proof:

$$
\begin{aligned}
& P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]=\sum_{\ell=|\mathcal{P}|+1}^{a} P[|\mathcal{A} \cap \mathcal{S}|=\ell] \\
& P[. . .] \leq \varepsilon \\
& \leq \sum_{\ell} P\left[\exists \mathcal{A}^{\prime} \in\binom{\mathcal{A}}{\ell} \forall i \in \mathcal{A}^{\prime} \quad \exists \mathcal{H}^{\prime} \in\binom{\mathcal{H}}{a-\ell+1} \forall j \in \mathcal{H}^{\prime} \quad \begin{array}{l}
y_{i j}=M A C_{\kappa_{j i}}\left(\hat{s_{i}}\right)
\end{array}\right] \\
& \leq \sum_{\ell} \sum_{\mathcal{A}^{\prime} \in\left(\frac{1}{\ell}\right)} P\left[\forall i \in \mathcal{A}^{\prime} \exists \ldots \forall \ldots\right] \leq \sum_{\ell} \sum_{\mathcal{A}^{\prime} \in\left(\begin{array}{l}
(,) \\
)
\end{array} \prod_{i \in \mathcal{A}^{\prime}} P[\exists \ldots \forall \ldots] \leq \ldots\right.} \\
& \leq \sum_{\ell}\binom{a}{\ell} \cdot\left(\binom{t+1}{a-\ell+1} \cdot \varepsilon^{a-\ell+1}\right)^{\ell}
\end{aligned}
$$

The Proof

Notation:

- $\mathcal{A} / \mathcal{P} / \mathcal{H}=$ active/passive cheaters, and honest players where (wlog) $|\mathcal{A}|+|\mathcal{P}|=t$ and $|\mathcal{H}|=t+1$
- \mathcal{S} = players that survive checking phase $(\mathcal{P}, \mathcal{H} \subseteq \mathcal{S})$

Observations:

- Error probability given by $\delta=P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]$
- $\delta=0$ if $|\mathcal{A}| \leq|\mathcal{P}|$. Thus: may assume $a:=|\mathcal{A}|>t / 2$

Actual proof:

$$
\begin{aligned}
& P[|\mathcal{A} \cap \mathcal{S}|>|\mathcal{P}|]=\sum_{\ell=|\mathcal{P}|+1}^{a} P[|\mathcal{A} \cap \mathcal{S}|=\ell] \\
& \leq \sum_{\ell} P\left[\exists \mathcal{A}^{\prime} \in\binom{\mathcal{A}}{\ell} \forall i \in \mathcal{A}^{\prime} \quad \exists \mathcal{H}^{\prime} \in\binom{\mathcal{H}}{a-\ell+1} \forall j \in \mathcal{H}^{\prime} \text { y } y_{i j}=M A C_{\kappa_{j i}}\left(\hat{s_{i}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{\ell}\binom{a}{\ell} \cdot\left(\binom{t+1}{a-\ell+1} \cdot \varepsilon^{a-\ell+1}\right)^{\ell} \leq \ldots \leq e \cdot((t+1) \cdot \varepsilon)^{(t+1) / 2}
\end{aligned}
$$

Summary

* First robust secret sharing scheme for $n=2 t+1$, with
- small overhead $O(k+n \cdot \log n)$ in share size
- efficient sharing and reconstruction procedures
\& Scheme is simple and natural adaptation of Rabin \& Ben-Or
\& Proof is non-standard and non-trivial

Summary

* First robust secret sharing scheme for $n=2 t+1$, with
- small overhead $O(k+n \cdot \log n)$ in share size
- efficient sharing and reconstruction procedures
\& Scheme is simple and natural adaptation of Rabin \& Ben-Or
\& Proof is non-standard and non-trivial
※ Open problem:
- Scheme with overhead $O(k)$ (= proven lower bound)

Note:

- All known schemes have a $\Omega(n)$ gap (for different reasons)
- Not known if this is inherent or not.

Summary

* First robust secret sharing scheme for $n=2 t+1$, with
- small overhead $O(k+n \cdot \log n)$ in share size
- efficient sharing and reconstruction procedures
\& Scheme is simple and natural adaptation of Rabin \& Ben-Or
\& Proof is non-standard and non-trivial
* Open problem:
- Scheme with overhead $O(k)$ (= proven lower bound)
* Note:
- All kr
- Not k
reasons)

