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(t-out-of-n) Secret Sharing

secret: S

B .

shares: S e G
¢ Privacy: any t shares give no information on s
e e e e

¥ Reconstructability: any t+1 shares uniquely determine s
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Shamir's Secret Sharing Scheme [Sha79]

secret: secl¥

* s e o R

shares: §1 = f(fbl) Sp = f(xn)

¢ Privacy and reconstructability follow from Lagrange interpolation

¢ Here and in general:
reconstructability requires correct shares



Robust Secret Sharing

secret: S

B .

shares: S e G

¢ Privacy: any t shares give no information on s

5 = 7

¢ Reconstructability: any ¢+1 shares uniquely determine s

S1 e Sl =P S



Robust Secret Sharing

secret: S Note:
assume dealer to be honest
‘ “RRR——

shares: SRS e G

¢ Privacy: any t shares give no information on s

5 = 7

¢ Robust reconstructability:
the set of all n shares determines s, even if ¢t of them are faulty

A
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(Im)possibility

This work: n = 2{+1, with unconditional security

T —

easy | tricky impossible

0 \ T g < n

additional checking data needed,
positive error probability: 2+

plain Shamir sharing
plus RS decoding,
no error probability
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Known Results vs Our Result

¢ Rabin & Ben-Or (1989):

® Overhead in share size:  O(k-n-logn) ®
® Computational complexity: poly(k,n) G

€ Cramer & F (2001), based on Cabello, Padro & Saez (1999),
generalized by Kurosawa & Suzuki (2009):

® Overhead in share size: O(k+n) © (lower bound: £2(k))
® Computational complexity: exp(n) ®

€ Our new scheme:

® Overhead in share size: O(k+n-logn) ©
® Computational complexity: poly(k,n) ©



Further Outline

¢

¥ The (simple) case ¢t < n/3

¢ The Rabin & Ben-Or scheme
¢ Our scheme

¢ Difficulties of the proof

€ Conclusion



The (Simple) Case n = 3t+1
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The (Simple) Case n = 3t+1

se ¥
* f(X) = s+ a1 X+...+ X! € F[X]

si=flm) - S St+2 o+ 2441 Sptrl -+ S M
\ \ \ '

t+1 correct shares r=t redundant
-> determines f correct shares

e=t faulty shares

Reed-Solomon decoding: If ¢ < r (satisfied here) then

® fis uniquely determined from s,...,5,
® fcan be efficiently computed (Berlekamp-Welch)
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The Rabin & Ben-Or Scheme (n = 2¢+1)

Sharing phase: € If
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The Rabin & Ben-Or Scheme (n = 2¢+1)

-

Sharing phase: e L
* fX) = star X+ ...+ Xt € F[X]
Si=Vicu) S; S S,
K11 Iy11 Kl | yil I<Jj1I y:ﬂ IimI UYni
: : Kiji ) Yji \
o By @/G y] yij = MACr;(si) 3
Kin UYin /ﬁ:m ym /ﬁ'/.jn y}n TR

¥ MAC security: for any s = si and 9 : Py = MACk;(5)] < €.
¥ Example: kij= (ai,0i5) € F2 and yij = MACk;(si) = aij-si + B

$ For error probability € < 2% :
® bit size |ki|,|yis| > k
® overhead per share (above Shamir share): 2(k-n)



The Rabin & Ben-Or Scheme (n = 2¢+1)

sel¥

|

K11 Y11 Ri Y Rl Yj Kn1 UYnl
Kin UYin fin Yin Kin  Yin """W‘#frm

Reconstruction phase:
1. For every share si: accept si iff it is approved by > t+1 players,

(meaning #{j| yij = MACk;(si)} > t+1)
2.Reconstruct s using the accepted shares s;.



The Rabin & Ben-Or Scheme (n = 2¢+1)

Sharing phase: € If
S
|

si=f{z1)
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Our New Scheme

Sharing phase: -
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Our New Scheme

Sharing phase:
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Our New Scheme

Sharing phase:

si=fa1)

K11 Y

Rin yln

se ¥
*
S;

fiX)=s+a1X+...+a:X? € FX]
Sj Sn

KRi1  Yi

K1  Yj

Kjn Yjn

“——

Rnl ynl

¥ Use small tags and keys |rql,|ysl = O(k/n+1) (instead of O(k))
¥ Gives: overhead per share: n-O(k/n+1) = O(k+n)

¢ Problem:

® MAC has weak security
® incorrect shares may be approved by some honest players
® Rabin & Ben-Or reconstruction fails



Our New Scheme

Sharing phase:

si=fz1)

o] S YA

Kin yln

se ¥
g
S;

Ria Yl

Kj Yj

Kin UYin

RKijn  Yjn

fiX)=s+a1X+...+aX! € FX]
5]' 5

T——

Knl UYnl

Yijg = MA C/{ji(Si) i

¥ Use small tags and keys |xi,|ys| = O(k/n+1) (instead of O(k))
¥ Gives: overhead per share: n-O(k/n+1) = O(k+n)

¢ Problem
s MAC - Need: better recons

truction procedure

s incorrQEMMBTES ™Ay be approved by some honest players
® Rabin & Ben-Or reconstruction fails
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¢ Example: Say that
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How to Reconstruct

¢ Example: Say that
A= e S = A -> accept si
® [4lyj =MACkp(s2)} = {1,...,t+1} -> accept
8 [jlysi = MACkz(s3)} = {2,...,t+1} -> reject s3

S




How to Reconstruct

¢ Example: Say that
A= e S = A -> accept si
® [4lyj =MACkp(s2)} = {1,...,t+1} -> accept
* Ulysi=MACkz(s) ) = {2, tF1} —> reject s

S

O

¥ 5 is approved by <t honest players (as player 3 is dishonest)
=> 5 stems from dishonest player



How to Reconstruct

¢ Example: Say that
A= e S = A -> accept si
® [4lyj =MACkp(s2)} = {1,...,t+1} -> accept
: {j Y3j :MAClijS(SS)} = {2,...,t—|—1} -> reject s3

S

¥ 5 is approved by <t honest players (as player 3 is dishonest)
=> 5 stems from dishonest player

¢ Rabin & Ben-Or reconstruction: accepts



How to Reconstruct

¢ Example: Say that
A= e S = A -> accept si
® [4lyj =MACkp(s2)} = {1,...,t+1} -> accept
: {j Y3j :MAC/@:;(S?))} = {2,...,t—|—1} -> reject s3

S

¥ 5 is approved by < t honest players (as player 3 is dishonest)
=> 5 stems from dishonest player

¢ Rabin & Ben-Or reconstruction: accepts

€ Our new reconstruction: will rejects



How to Reconstruct

¢ Example: Say that
* {7y :MACKDﬂ(Sl)} = -> accept si

=3 Rabin & Ben-Or reconstruction:

S ,
t Accept every share s; that is approved

by t+1 players.

S

*€c

S . dishonest
Our new reconstruction: )

=2

- Accept every share s; that is approved
¢ Rabir

by t+1 players with accepted shares.

€ Our



How to Reconstruct

¢ Example: Say that
* {7y :MACKDﬂ(Sl)} = -> accept si

=3 Rabin & Ben-Or reconstruction:

S ,
t Accept every share s; that is approved

by t+1 players.

S

*€c

S . dishonest
Our new reconstruction: )

=2

- Accept every share s; that is approved
¢ Rabir

by t+1 players with accepted shares.

€ Our

Plus: Reed-Solomon decoding.

AR —




Our New Reconstruction Procedure

(Eni)=Set= Goods— 1.}

(Loop) For every 1€ Good:

if #{j € Good |y = MACk;(s:)} < t then
- set Good := Good \{i}
— redo (Loop)

(BEc)e Ser - lecd-Solowman 5 00




Our New Reconstruction Procedure
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if #{j € Good |y = MACk;(s:)} < t then
- set Good := Good \{i}
— redo (Loop)
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Our New Reconstruction Procedure

(CRIEEESES el " = {17771
(Loop) For every i€ Good:

= <‘b 1] = MA C/Q]Z(Sz)} S t then
- set Good:= Good \N{i}
— redo (Loop)
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Our New Reconstruction Procedure

- redo (Ldop)‘

(BEc)e Ser - lecd-Solowman 5 00




Our New Reconstruction Procedure

(Init) Set = {1

(Loop) For every zEGoad

. Y _ﬂMACKJ]z(SZ)} < t then

if # ),
R st _V GOOd \{7[

—fredo (Loop:‘

(BEc)e Ser - lecd-Solowman 5 00




Our New Reconstruction Procedure

—‘redo(Lébp"

(BEc)e Ser - lecd-Solowman 5 00

" Mai | "

Main Theorem. If MAC is s-secure then our scheme is -robust with

6 < e((t+1)-e)t+1)/2 (Where e=exp(1)).
b o




Our New Reconstruction Procedure

'

Main Theorem. If MAC is s-secure then our scheme is -robust with

(Dec)

—‘redo(Lébp"

Set s:= Reed-Solomon({s; }icGood})

5 < e((t41)e)+)/2

(Where e=exp(1)).

3

b
r

Corollary. Using MAC with |kil,|yi5| = O(k/n+logn) gives

b

5 < 21k

4
3




What Makes the Proof Tricky




What Makes the Proof Tricky

e

1. Optimal strategy for dishonest players is unclear

¢ In Rabin & Ben-Or: an incorrect share for every dishonest player

¥ Here: some dishonest players may hand in correct shares



What Makes the Proof Tricky

R

1. Optimal strategy for dishonest players is unclear

@)

¢ In Rabin & Ben-Or: an incorrect share for every dishonest player

¥ Here: some dishonest players may hand in correct shares

@)

¢ Such a dishonest player:
® stays in Good
® can support (i.e. vote for) bad shares

*€c

such dishonest players:
® the easier it gets for bad shares to survive

® the more bad shares have to survive to fool RS decoding
(# bad shares > )

¢ Optimal trade-off: unclear



What Makes the Proof Tricky

2. Circular dependencies

¢ Whether s gets accepted depends on whether S gets accepted ...



What Makes the Proof Tricky

2. Circular dependencies

¢ Whether s gets accepted depends on whether S gets accepted ...

¢ .. and vice versa
¢ Cannot analyze individual bad shares

¢ If we try, we run into a circularity
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® S = players that survive checking phase (P,;HCS)
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Notation:
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® Not known if this is inherent or not.
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® efficient sharing and reconstruction procedures

¢ Scheme is simple and natural adaptation of Rabin & Ben-Or

€ Proof is non-standard and non-trivial

¢ Open problem:
® Scheme with overhead O(k) (= proven lower bound)

¢ Note: \
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