
Unconditionally-Secure Robust Secret Sharing
with Compact Shares

Serge Fehr
CWI Amsterdam

www.cwi.nl/~fehr

Alfonso Cevallos
Leiden University

Rafail Ostrovsky
UCLA

Yuval Rabani
Hebrew University of Jerusalem

http://www.cwi.nl/~fehr
http://www.cwi.nl/~fehr
http://www.cs.ucla.edu/~rafail/
http://www.cs.ucla.edu/~rafail/
http://www.cs.huji.ac.il/~yrabani/
http://www.cs.huji.ac.il/~yrabani/

 (t-out-of-n) Secret Sharing

secret:

shares:

s

s1 s2 … sn

Privacy: any t shares give no information on s

Reconstructability: any t+1 shares uniquely determine s

s1 s2 … st ?

s1 s2 … st+1 s

 Shamir’s Secret Sharing Scheme [Sha79]

secret:

shares:

s ! F

s1 = f(x1) … sn = f(xn)

Privacy and reconstructability follow from Lagrange interpolation

f(X) = s+a 1X+...+atX
t ! F[X]

 Shamir’s Secret Sharing Scheme [Sha79]

secret:

shares:

s ! F

s1 = f(x1) … sn = f(xn)

Privacy and reconstructability follow from Lagrange interpolation

f(X) = s+a 1X+...+atX
t ! F[X]

Here and in general:
 reconstructability requires correct shares

 Robust Secret Sharing

secret:

shares:

s

s1 s2 … sn

Privacy: any t shares give no information on s
s1 … st ?

Reconstructability: any t+1 shares uniquely determine s
s1 … st+1 s

 Robust Secret Sharing

secret:

shares:

s

s1 s2 … sn

Privacy: any t shares give no information on s
s1 … st ?

ˆs1̂

Robust reconstructability:
 the set of all n shares determines s, even if t of them are faulty

… st+1 sst sn…

Note:
assume dealer to be honest

 Application: Secure Data Storage

user

servers

…

data

 Application: Secure Data Storage

user

servers

s1 s2

…

snsn-1

 Application: Secure Data Storage

user

servers

s1 s2

…

snsn-1

= ?

 Application: Secure Data Storage

user

servers

…

snsn-1

= ?

s1̂ s2̂

 (Im)possibility

t

easy tricky impossible

0 n/3 n/2 n

plain Shamir sharing
plus RS decoding,

no error probability
additional checking data needed,
positive error probability: 2"k

 (Im)possibility

t

easy tricky impossible

0 n/3 n/2 n

plain Shamir sharing
plus RS decoding,

no error probability
additional checking data needed,
positive error probability: 2"k

This work: n = 2t+1, with unconditional security

 Known Results vs Our Result

Rabin & Ben-Or (1989):
Overhead in share size: O(k·n·logn)
Computational complexity: poly(k,n) �

 Known Results vs Our Result

Rabin & Ben-Or (1989):
Overhead in share size: O(k·n·logn)
Computational complexity: poly(k,n) �

Cramer & F (2001), based on Cabello, Padró & Sáez (1999),
generalized by Kurosawa & Suzuki (2009):

Overhead in share size: O(k+n) � (lower bound: !(k))
Computational complexity: exp(n)

 Known Results vs Our Result

Rabin & Ben-Or (1989):
Overhead in share size: O(k·n·logn)
Computational complexity: poly(k,n) �

Cramer & F (2001), based on Cabello, Padró & Sáez (1999),
generalized by Kurosawa & Suzuki (2009):

Overhead in share size: O(k+n) � (lower bound: !(k))
Computational complexity: exp(n)

Our new scheme:
Overhead in share size: O(k+n·logn) �
Computational complexity: poly(k,n) �

 Further Outline

Introduction

The (simple) case t < n/3

The Rabin & Ben-Or scheme

Our scheme

Difficulties of the proof

Conclusion

sn…sn"t+1

 The (Simple) Case n = 3t+1

s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… s2t+1st+1 st+2 …

snˆ

 The (Simple) Case n = 3t+1

s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… …s2t+1 sn"t+1ˆst+1 st+2 …

snˆ

 The (Simple) Case n = 3t+1

s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… …s2t+1 sn"t+1ˆst+1 st+2 …

t+1 correct shares
-> determines f

snˆ

 The (Simple) Case n = 3t+1

s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… …s2t+1 sn"t+1ˆst+1 st+2 …

t+1 correct shares
-> determines f

r=t redundant
correct shares

snˆ

 The (Simple) Case n = 3t+1

s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… …s2t+1 sn"t+1ˆst+1 st+2 …

t+1 correct shares
-> determines f

r=t redundant
correct shares

e=t faulty shares

snˆ

 The (Simple) Case n = 3t+1

s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… …s2t+1 sn"t+1ˆst+1 st+2 …

t+1 correct shares
-> determines f

r=t redundant
correct shares

e=t faulty shares

Reed-Solomon decoding: If e # r (satisfied here) then
f is uniquely determined from s1, . . . ,sn

f can be efficiently computed (Berlekamp-Welch)
ˆ

sn…

 The Rabin & Ben-Or Scheme (n = 2t+1)
s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… si sj…
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

Sharing phase:

sn…

 The Rabin & Ben-Or Scheme (n = 2t+1)
s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… si sj…
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

yij = MAC"ji(si)

Sharing phase:

sn…

 The Rabin & Ben-Or Scheme (n = 2t+1)
s ! F

s1=f(x1)

f(X) = s+a 1X+...+atX
t ! F[X]

… si sj…
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

yij = MAC"ji(si)

Sharing phase:

MAC security: for any si $ si and yij : P[yij = MAC"ji(si)] # #.

Example: "ij = ($ij,%ij) ! F2 and yij = MAC"ji(si) = $ij ·si + %ij.

For error probability # # 2"k :
bit size |"ij|,|yij| % k

overhead per share (above Shamir share): !(k·n)

ˆ ˆ ˆ ˆ

sn…

 The Rabin & Ben-Or Scheme (n = 2t+1)

… si sj…
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

Reconstruction phase:
1. For every share si : accept si iff it is approved by % t+1 players,

 (meaning #{j | yij = MAC"ji(si)} % t+1)
2.Reconstruct s using the accepted shares si .

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

sn…

 The Rabin & Ben-Or Scheme (n = 2t+1)

… si sj…
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

sn…

 Our New Scheme

… si sj…
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

sn…

 Our New Scheme

… si sj…
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

Use small tags and keys |"ij|,|yij| = Õ(k/n +1) (instead of O(k))
Gives: overhead per share: n·Õ(k/n +1) = Õ(k +n)

sn…

 Our New Scheme

… si sj…
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

Use small tags and keys |"ij|,|yij| = Õ(k/n +1) (instead of O(k))
Gives: overhead per share: n·Õ(k/n +1) = Õ(k +n)

Problem:
MAC has weak security
incorrect shares may be approved by some honest players
Rabin & Ben-Or reconstruction fails

sn…

 Our New Scheme

… si sj…
"11

⋮
⋮
⋮

"1n

y11

⋮
⋮
⋮

y1n

"i1

⋮
⋮
"ij

⋮
"in

yi1

⋮
⋮
yij

⋮
yin

"j1

⋮
"ji

⋮
⋮
"jn

yj1

⋮
yji

⋮
⋮
yjn

"n1

⋮
⋮
⋮

"nn

yn1

⋮
⋮
⋮

ynn

s ! F
f(X) = s+a 1X+...+atX

t ! F[X]
Sharing phase:

yij = MAC"ji(si)

s1=f(x1)

Use small tags and keys |"ij|,|yij| = Õ(k/n +1) (instead of O(k))
Gives: overhead per share: n·Õ(k/n +1) = Õ(k +n)

Problem:
MAC has weak security
incorrect shares may be approved by some honest players
Rabin & Ben-Or reconstruction fails

Need: better reconstruction procedure

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}

 How to Reconstruct

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}

 How to Reconstruct

-> accept s1

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}
 {j | y2j = MAC"j2(s2)} = {1,...,t+1}

 How to Reconstruct

-> accept s1

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}
 {j | y2j = MAC"j2(s2)} = {1,...,t+1}

 How to Reconstruct

-> accept s1

-> accept s2

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}
 {j | y2j = MAC"j2(s2)} = {1,...,t+1}
 {j | y3j = MAC"j3(s3)} = {2,...,t+1}

 How to Reconstruct

-> accept s1

-> accept s2

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}
 {j | y2j = MAC"j2(s2)} = {1,...,t+1}
 {j | y3j = MAC"j3(s3)} = {2,...,t+1}
 ...

 How to Reconstruct

-> accept s1

-> accept s2

-> reject s3

 s2 is approved by # t honest players (as player 3 is dishonest)
 => s2 stems from dishonest player

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}
 {j | y2j = MAC"j2(s2)} = {1,...,t+1}
 {j | y3j = MAC"j3(s3)} = {2,...,t+1}
 ...

 How to Reconstruct

-> accept s1

-> accept s2

-> reject s3

 s2 is approved by # t honest players (as player 3 is dishonest)
 => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}
 {j | y2j = MAC"j2(s2)} = {1,...,t+1}
 {j | y3j = MAC"j3(s3)} = {2,...,t+1}
 ...

 How to Reconstruct

-> accept s1

-> accept s2

-> reject s3

 s2 is approved by # t honest players (as player 3 is dishonest)
 => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2

Our new reconstruction: will rejects s2

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}
 {j | y2j = MAC"j2(s2)} = {1,...,t+1}
 {j | y3j = MAC"j3(s3)} = {2,...,t+1}
 ...

 How to Reconstruct

-> accept s1

-> accept s2

-> reject s3

 s2 is approved by # t honest players (as player 3 is dishonest)
 => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2

Our new reconstruction: will rejects s2

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}
 {j | y2j = MAC"j2(s2)} = {1,...,t+1}
 {j | y3j = MAC"j3(s3)} = {2,...,t+1}
 ...

 How to Reconstruct

-> accept s1

-> accept s2

-> reject s3

Rabin & Ben-Or reconstruction:
 Accept every share si that is approved
 by t+1 players.

Our new reconstruction:
 Accept every share si that is approved
 by t+1 players with accepted shares.

 s2 is approved by # t honest players (as player 3 is dishonest)
 => s2 stems from dishonest player

Rabin & Ben-Or reconstruction: accepts s2

Our new reconstruction: will rejects s2

Example: Say that
 {j | y1j = MAC"j1(s1)} = {1,...,n}
 {j | y2j = MAC"j2(s2)} = {1,...,t+1}
 {j | y3j = MAC"j3(s3)} = {2,...,t+1}
 ...

 How to Reconstruct

-> accept s1

-> accept s2

-> reject s3

Rabin & Ben-Or reconstruction:
 Accept every share si that is approved
 by t+1 players.

Our new reconstruction:
 Accept every share si that is approved
 by t+1 players with accepted shares.

 Plus: Reed-Solomon decoding.

(Init) Set Good := {1,...,n}

(Loop) For every i !Good :
 if #{j !Good | yij = MAC"ji(si)} # t then
 - set Good := Good ∖{i}
 - redo (Loop)

(Dec) Set s:= Reed-Solomon({si }i !Good})

 Our New Reconstruction Procedure

(Init) Set Good := {1,...,n}

(Loop) For every i !Good :
 if #{j !Good | yij = MAC"ji(si)} # t then
 - set Good := Good ∖{i}
 - redo (Loop)

(Dec) Set s:= Reed-Solomon({si }i !Good})

 Our New Reconstruction Procedure

(Init) Set Good := {1,...,n}

(Loop) For every i !Good :
 if #{j !Good | yij = MAC"ji(si)} # t then
 - set Good := Good ∖{i}
 - redo (Loop)

(Dec) Set s:= Reed-Solomon({si }i !Good})

 Our New Reconstruction Procedure

(Init) Set Good := {1,...,n}

(Loop) For every i !Good :
 if #{j !Good | yij = MAC"ji(si)} # t then
 - set Good := Good ∖{i}
 - redo (Loop)

(Dec) Set s:= Reed-Solomon({si }i !Good})

 Our New Reconstruction Procedure

(Init) Set Good := {1,...,n}

(Loop) For every i !Good :
 if #{j !Good | yij = MAC"ji(si)} # t then
 - set Good := Good ∖{i}
 - redo (Loop)

(Dec) Set s:= Reed-Solomon({si }i !Good})

 Our New Reconstruction Procedure

(Init) Set Good := {1,...,n}

(Loop) For every i !Good :
 if #{j !Good | yij = MAC"ji(si)} # t then
 - set Good := Good ∖{i}
 - redo (Loop)

(Dec) Set s:= Reed-Solomon({si }i !Good})

 Our New Reconstruction Procedure

Main Theorem. If MAC is #-secure then our scheme is &-robust with

 & # e·((t+1)·#)(t+1)/2 (where e=exp(1)).

(Init) Set Good := {1,...,n}

(Loop) For every i !Good :
 if #{j !Good | yij = MAC"ji(si)} # t then
 - set Good := Good ∖{i}
 - redo (Loop)

(Dec) Set s:= Reed-Solomon({si }i !Good})

 Our New Reconstruction Procedure

Main Theorem. If MAC is #-secure then our scheme is &-robust with

 & # e·((t+1)·#)(t+1)/2 (where e=exp(1)).

Corollary. Using MAC with |"ij|,|yij| = O(k/n +logn) gives

& # 2"!(k) .

 What Makes the Proof Tricky

 What Makes the Proof Tricky

In Rabin & Ben-Or: an incorrect share for every dishonest player

Here: some dishonest players may hand in correct shares

1. Optimal strategy for dishonest players is unclear

 What Makes the Proof Tricky

In Rabin & Ben-Or: an incorrect share for every dishonest player

Here: some dishonest players may hand in correct shares

1. Optimal strategy for dishonest players is unclear

Such a passive dishonest player:
stays in Good
can support (i.e. vote for) bad shares

The more such passive dishonest players:
the easier it gets for bad shares to survive
the more bad shares have to survive to fool RS decoding
(# bad shares ! # correct shares of dishonest players)

Optimal trade-off: unclear

 What Makes the Proof Tricky

Whether si gets accepted depends on whether sj gets accepted ...

2. Circular dependencies

ˆ ˆ

 What Makes the Proof Tricky

Whether si gets accepted depends on whether sj gets accepted ...

2. Circular dependencies

ˆ ˆ

... and vice versa

Cannot analyze individual bad shares

If we try, we run into a circularity

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (P,H & S)

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (P,H & S)
Observations:

Error probability given by & = P[|A ' S| > |P|]

 & = 0 if |A| # |P|. Thus: may assume a :=|A| > t/2

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (P,H & S)
Observations:

Error probability given by & = P[|A ' S| > |P|]

 & = 0 if |A| # |P|. Thus: may assume a :=|A| > t/2

Actual proof:
 P[|A ' S| > |P|] = (P[|A ' S| = ℓ]

ℓ=|P|+1

a

*Hʹ!) j!Hʹ: yij = MAC!ji(si)]()H

a"ℓ+1
ˆ) i!Aʹ

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (P,H & S)
Observations:

Error probability given by & = P[|A ' S| > |P|]

 & = 0 if |A| # |P|. Thus: may assume a :=|A| > t/2

Actual proof:
 P[|A ' S| > |P|] = (P[|A ' S| = ℓ]

ℓ=|P|+1

a

(P[*Aʹ!()
A

ℓℓ

*Hʹ!) j!Hʹ: yij = MAC!ji(si)]()H

a"ℓ+1
ˆ) i!Aʹ

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (P,H & S)
Observations:

Error probability given by & = P[|A ' S| > |P|]

 & = 0 if |A| # |P|. Thus: may assume a :=|A| > t/2

Actual proof:
 P[|A ' S| > |P|] = (P[|A ' S| = ℓ]

ℓ=|P|+1

a

(P[*Aʹ!()
A

ℓℓ

P[...] # #

*Hʹ!) j!Hʹ: yij = MAC!ji(si)]()H

a"ℓ+1
ˆ) i!Aʹ

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (P,H & S)
Observations:

Error probability given by & = P[|A ' S| > |P|]

 & = 0 if |A| # |P|. Thus: may assume a :=|A| > t/2

Actual proof:
 P[|A ' S| > |P|] = (P[|A ' S| = ℓ]

ℓ=|P|+1

a

(P[*Aʹ!()
A

ℓℓ

ℓ
((P[) i!Aʹ * ...) ...]

()A

ℓAʹ!

P[...] # #

*Hʹ!) j!Hʹ: yij = MAC!ji(si)]()H

a"ℓ+1
ˆ) i!Aʹ

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (P,H & S)
Observations:

Error probability given by & = P[|A ' S| > |P|]

 & = 0 if |A| # |P|. Thus: may assume a :=|A| > t/2

Actual proof:
 P[|A ' S| > |P|] = (P[|A ' S| = ℓ]

ℓ=|P|+1

a

(P[*Aʹ!()
A

ℓℓ

ℓ
((P[) i!Aʹ * ...) ...]

()A

ℓAʹ! ℓ
((+ P[* ...) ...] # ...

()A

ℓAʹ! i!Aʹ

P[...] # #

*Hʹ!) j!Hʹ: yij = MAC!ji(si)]()H

a"ℓ+1
ˆ) i!Aʹ

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (P,H & S)
Observations:

Error probability given by & = P[|A ' S| > |P|]

 & = 0 if |A| # |P|. Thus: may assume a :=|A| > t/2

Actual proof:
 P[|A ' S| > |P|] = (P[|A ' S| = ℓ]

ℓ=|P|+1

a

(P[*Aʹ!()
A

ℓℓ

ℓ
((P[) i!Aʹ * ...) ...]

()A

ℓAʹ! ℓ
((+ P[* ...) ...] # ...

()A

ℓAʹ! i!Aʹ

(()·
a

ℓ (()· #a"ℓ +1)t+1

a"ℓ+1

ℓ

ℓ

P[...] # #

*Hʹ!) j!Hʹ: yij = MAC!ji(si)]()H

a"ℓ+1
ˆ) i!Aʹ

 The Proof
Notation:

 A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

 S = players that survive checking phase (P,H & S)
Observations:

Error probability given by & = P[|A ' S| > |P|]

 & = 0 if |A| # |P|. Thus: may assume a :=|A| > t/2

Actual proof:
 P[|A ' S| > |P|] = (P[|A ' S| = ℓ]

ℓ=|P|+1

a

(P[*Aʹ!()
A

ℓℓ

ℓ
((P[) i!Aʹ * ...) ...]

()A

ℓAʹ! ℓ
((+ P[* ...) ...] # ...

()A

ℓAʹ! i!Aʹ

(()·
a

ℓ (()· #a"ℓ +1)t+1

a"ℓ+1

ℓ

ℓ
... # e·((t+1)·#)(t+1)/2 ■

P[...] # #

 Summary

First robust secret sharing scheme for n = 2t+1 , with
small overhead O(k+n·logn) in share size
efficient sharing and reconstruction procedures

Scheme is simple and natural adaptation of Rabin & Ben-Or

Proof is non-standard and non-trivial

 Summary

First robust secret sharing scheme for n = 2t+1 , with
small overhead O(k+n·logn) in share size
efficient sharing and reconstruction procedures

Scheme is simple and natural adaptation of Rabin & Ben-Or

Proof is non-standard and non-trivial

Open problem:
Scheme with overhead '(k) (= proven lower bound)

Note:
All known schemes have a !(n) gap (for different reasons)
Not known if this is inherent or not.

 Summary

First robust secret sharing scheme for n = 2t+1 , with
small overhead O(k+n·logn) in share size
efficient sharing and reconstruction procedures

Scheme is simple and natural adaptation of Rabin & Ben-Or

Proof is non-standard and non-trivial

Open problem:
Scheme with overhead '(k) (= proven lower bound)

Note:
All known schemes have a !(n) gap (for different reasons)
Not known if this is inherent or not. THANK YOU

