

Unconditionally-Secure Robust Secret Sharing with Compact Shares

Serge Fehr

CWI Amsterdam www.cwi.nl/~fehr

Alfonso Cevallos

Rafail Ostrovsky

Yuval Rabani

Leiden University

UCLA

Hebrew University of Jerusalem

(t-out-of-n) Secret Sharing

 $\stackrel{\scriptstyle \ensuremath{\mathnormal{\vee}}}{=}$ **Privacy**: any t shares give no information on s

 $s_1 \quad s_2 \quad \cdots \quad s_t \quad \longrightarrow \quad ?$

Solution Reconstructability: any t+1 shares uniquely determine s

 $s_1 \quad s_2 \quad \cdots \quad s_{t+1} \implies s$

Shamir's Secret Sharing Scheme [Sha79]

Privacy and reconstructability follow from Lagrange interpolation

Shamir's Secret Sharing Scheme [Sha79]

Privacy and reconstructability follow from Lagrange interpolation

Here and in general: reconstructability requires correct shares

Robust Secret Sharing

 $\stackrel{\text{\tiny \extsf{blue}}}{=}$ **Privacy**: any t shares give no information on s

 $s_1 \quad \dots \quad s_t \quad \longrightarrow \quad ?$

Reconstructability: any t+1 shares uniquely determine s

$$s_1 \quad \cdots \quad s_{t+1} \quad \Longrightarrow \quad s_{t+1}$$

Robust Secret Sharing

Privacy: any t shares give no information on s

$$s_1 \quad \cdots \quad s_t \quad \longrightarrow \quad ?$$

Solution Robust reconstructability:
the set of all
$$n$$
 shares determines s , even if t of them are faulty
 $\hat{s}_1 \ \cdots \ \hat{s}_t \ s_{t+1} \ \cdots \ s_n \longrightarrow s$

(Im)possibility

eas	sy tr	ricky	impossible	
	n/3	n_{\prime}	/2	n
plain Sham plus RS c no error p	lecoding,		ional checking data needed, itive error probability: 2^{-k}	

(Im)possibility

This work: n = 2t+1, with unconditional security

Known Results vs Our Result

Rabin & Ben-Or (1989):

- Overhead in share size: $O(k \cdot n \cdot \log n)$ \otimes
- Computational complexity: poly(k,n) \odot

Known Results vs Our Result

- Rabin & Ben-Or (1989):
 - Overhead in share size: $O(k \cdot n \cdot \log n)$ \otimes
 - Computational complexity: poly(k,n) \odot
- Cramer & F (2001), based on Cabello, Padró & Sáez (1999), generalized by Kurosawa & Suzuki (2009):
 - Overhead in share size: O(k+n) \odot (lower bound: $\Omega(k)$)
 - Computational complexity: exp(n) \otimes

Known Results vs Our Result

- Rabin & Ben-Or (1989):
 - Overhead in share size: $O(k \cdot n \cdot \log n)$ \otimes
 - Computational complexity: poly(k,n) \bigcirc
- Cramer & F (2001), based on Cabello, Padró & Sáez (1999), generalized by Kurosawa & Suzuki (2009):
 - Overhead in share size: O(k+n) \odot (lower bound: $\Omega(k)$)
 - Computational complexity: exp(n) \otimes
- Our new scheme:
 - Overhead in share size: $O(k+n \cdot \log n)$
 - Computational complexity: poly(k,n)

 $O(k+n \cdot \log n)$ \odot poly(k,n) \odot

Further Outline

- Section Introduction
- From The (simple) case t < n/3
- Fine Rabin & Ben-Or scheme
- Gur scheme
- Difficulties of the proof
- Conclusion

The (Simple) Case n = 3t+1

 $s \in \mathbb{F}$ $f(X) = s + a_1 X + \ldots + a_t X^t \in \mathbb{F}[X]$

 $s_1 = f(x_1) \dots s_{t+1} \dots s_{t+2} \dots s_{2t+1} \dots s_{n-t+1} \dots s_n$

The (Simple) Case n = 3t+1 $s \in \mathbb{F}$ $f(X) = s + a_1 X + \ldots + a_t X^t \in \mathbb{F}[X]$ $s_1 = f(x_1) \dots s_{t+1} \dots s_{t+2} \dots s_{2t+1} \dots \hat{s}_{n-t+1} \dots \hat{s}_n$

Reed-Solomon decoding: If $e \leq r$ (satisfied here) then

- f is uniquely determined from s_1, \ldots, \hat{s}_n
- f can be efficiently computed (Berlekamp-Welch)

- $\stackrel{\forall}{\Rightarrow}$ MAC security: for any $\hat{s}_i \neq s_i$ and \hat{y}_{ij} : $P[\hat{y}_{ij} = MAC_{\kappa_{ji}}(\hat{s}_i)] \leq \varepsilon$.
- Example: $\kappa_{ij} = (\alpha_{ij}, \beta_{ij}) \in \mathbb{F}^2$ and $y_{ij} = MAC_{\kappa_{ji}}(s_i) = \alpha_{ij} \cdot s_i + \beta_{ij}$.
- For error probability $\varepsilon \leq 2^{-k}$:
 - bit size $|\kappa_{ij}|, |y_{ij}| \geq k$
 - overhead per share (above Shamir share): $\Omega(k \cdot n)$

Reconstruction phase:

1. For every share s_i : accept s_i iff it is approved by $\geq t+1$ players, (meaning $\#\{j | y_{ij} = MAC_{\kappa_{ji}}(s_i)\} \geq t+1$) 2. Reconstruct s using the accepted shares s_i .

Solution Use small tags and keys $|\kappa_{ij}|, |y_{ij}| = \tilde{O}(k/n+1)$ (instead of O(k)) Gives: overhead per share: $n \cdot \tilde{O}(k/n+1) = \tilde{O}(k+n)$

- Solution \mathbb{S} Use small tags and keys $|\kappa_{ij}|, |y_{ij}| = \tilde{O}(k/n+1)$ (instead of O(k))
- Gives: overhead per share: $n \cdot \tilde{O}(k/n+1) = \tilde{O}(k+n)$
- Problem:
 - MAC has weak security
 - incorrect shares may be approved by some honest players
 - Rabin & Ben-Or reconstruction fails

- Solution Use small tags and keys $|\kappa_{ij}|, |y_{ij}| = \tilde{O}(k/n+1)$ (instead of O(k))
- Gives: overhead per share: $n \cdot \tilde{O}(k/n+1) = \tilde{O}(k+n)$
- Problem
 MAC Need: better reconstruction procedure
 - incorrect shares may be approved by some honest players
 - Rabin & Ben-Or reconstruction fails

- Example: Say that
 - $\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, \dots, n\}$

- Example: Say that
 - $\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, ..., n\}$ -> accept s_1

- Example: Say that
 - $\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, ..., n\}$ -> accept s_1
 - $\{j \mid y_{2j} = MAC_{\kappa_{j2}}(s_2)\} = \{1, \dots, t+1\}$

- Example: Say that
 - $\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, ..., n\}$ -> accept s_1
 - $\{j \mid y_{2j} = MAC_{\kappa_{j2}}(s_2)\} = \{1, ..., t+1\}$ -> accept s_2

- Example: Say that
 - $\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, ..., n\}$ -> accept s_1
 - $\{j \mid y_{2j} = MAC_{\kappa_{j2}}(s_2)\} = \{1, ..., t+1\}$ -> accept s_2
 - $\{j \mid y_{3j} = MAC_{\kappa_{j3}}(s_3)\} = \{2, \dots, t+1\}$

Example: Say that

-

...

- $\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, ..., n\}$ -> accept s_1
- $\{j \mid y_{2j} = MAC_{\kappa_{j2}}(s_2)\} = \{1, ..., t+1\}$ -> accept s_2
- $\{j \mid y_{3j} = MAC_{\kappa_{j3}}(s_3)\} = \{2, ..., t+1\}$ -> reject s_3

- Example: Say that
 - $\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, ..., n\}$ -> accept s_1
 - $\{j \mid y_{2j} = MAC_{\kappa_{j2}}(s_2)\} = \{1, ..., t+1\}$ -> accept s_2
 - $\{j \mid y_{3j} = MAC_{\kappa_{j3}}(s_3)\} = \{2, ..., t+1\}$ -> reject s_3
- $\stackrel{>}{\sim}$ s₂ is approved by $\leq t$ honest players (as player 3 is dishonest) => s₂ stems from dishonest player

- Example: Say that
 - $\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, ..., n\}$ -> accept s_1
 - $\{j \mid y_{2j} = MAC_{\kappa_{j2}}(s_2)\} = \{1, ..., t+1\}$ -> accept s_2
 - $\{j \mid y_{3j} = MAC_{\kappa_{j3}}(s_3)\} = \{2, ..., t+1\}$ -> reject s_3
- \$\$ s2 is approved by \$\leq t\$ honest players (as player 3 is dishonest)
 \$\$ s2 stems from dishonest player
- Rabin & Ben-Or reconstruction: accepts s2

- Example: Say that
 - $\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, ..., n\}$ -> accept s_1
 - $\{j \mid y_{2j} = MAC_{\kappa_{j2}}(s_2)\} = \{1, ..., t+1\}$ -> accept s_2
 - $\{j \mid y_{3j} = MAC_{\kappa_{j3}}(s_3)\} = \{2, ..., t+1\}$ -> reject s_3
- Solution s_2 is approved by $\leq t$ honest players (as player 3 is dishonest) => s_2 stems from dishonest player
- Rabin & Ben-Or reconstruction: accepts s2
- $\frac{9}{9}$ Our new reconstruction: will rejects s_2


```
• \{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, ..., n\} -> accept s_1
  -
      Rabin & Ben-Or reconstruction:
         Accept every share s_i that is approved
          by t+1 players.
Se is
         Our new reconstruction:
     =>
         Accept every share s_i that is approved
Rabi
          by t+1 players with accepted shares.
Our new reconstruction: will rejects
```

dishonest)


```
\{j \mid y_{1j} = MAC_{\kappa_{j1}}(s_1)\} = \{1, \dots, n\} -> accept s_1
   -
      { Rabin & Ben-Or reconstruction:
          Accept every share s_i that is approved
          by t+1 players.
Se is
         Our new reconstruction:
     =>
          Accept every share s_i that is approved
🖗 Rabir
          by t+1 players with accepted shares.
Sour r
          Plus: Reed-Solomon decoding.
```

dishonest)

Main Theorem. If MAC is ε -secure then our scheme is δ -robust with $\delta \leq e \cdot ((t+1) \cdot \varepsilon)^{(t+1)/2}$ (where $e = \exp(1)$).

Main Theorem. If MAC is ε -secure then our scheme is δ -robust with $\delta \leq e \cdot ((t+1) \cdot \varepsilon)^{(t+1)/2}$ (where $e = \exp(1)$).

Corollary. Using MAC with $|\kappa_{ij}|, |y_{ij}| = O(k/n + \log n)$ gives

 $\delta \leq 2^{- \Omega(k)}$.

- 1. Optimal strategy for dishonest players is unclear
 - In Rabin & Ben-Or: an incorrect share for every dishonest player
 - Here: some dishonest players may hand in correct shares

- 1. Optimal strategy for dishonest players is unclear
 - In Rabin & Ben-Or: an incorrect share for every dishonest player
 - Here: some dishonest players may hand in correct shares
 - Such a passive dishonest player:
 - stays in Good
 - can support (i.e. vote for) bad shares
 - The more such passive dishonest players:
 - The easier it gets for bad shares to survive
 - the more bad shares have to survive to fool RS decoding (# bad shares > # correct shares of dishonest players)
 - Optimal trade-off: unclear

- 2. Circular dependencies
 - Solution Whether $\hat{s_i}$ gets accepted depends on whether $\hat{s_j}$ gets accepted ...

- 2. Circular dependencies
 - Solution Whether $\hat{s_i}$ gets accepted depends on whether $\hat{s_j}$ gets accepted ...
 - 🧉 ... and vice versa
 - Cannot analyze individual bad shares
 - Figure 1 If we try, we run into a circularity

Notation:

- $\mathcal{A}/\mathcal{P}/\mathcal{H}$ = active/passive cheaters, and honest players where (wlog) $|\mathcal{A}| + |\mathcal{P}| = t$ and $|\mathcal{H}| = t+1$
- S = players that survive checking phase ($\mathcal{P}, \mathcal{H} \subseteq S$)

Notation:

• $\mathcal{A}/\mathcal{P}/\mathcal{H}$ = active/passive cheaters, and honest players where (wlog) $|\mathcal{A}| + |\mathcal{P}| = t$ and $|\mathcal{H}| = t+1$

• S = players that survive checking phase ($\mathcal{P}, \mathcal{H} \subseteq S$)

Observations:

- Error probability given by $\delta = P[|A \cap S| > |P|]$
- $\delta = 0$ if $|\mathcal{A}| \leq |\mathcal{P}|$. Thus: may assume $a := |\mathcal{A}| > t/2$

Notation:

• $\mathcal{A}/\mathcal{P}/\mathcal{H}$ = active/passive cheaters, and honest players where (wlog) $|\mathcal{A}| + |\mathcal{P}| = t$ and $|\mathcal{H}| = t+1$

• S = players that survive checking phase ($\mathcal{P}, \mathcal{H} \subseteq S$)

Observations:

- Error probability given by $\delta = P[|A \cap S| > |P|]$
- $\delta = 0$ if $|\mathcal{A}| \leq |\mathcal{P}|$. Thus: may assume $a := |\mathcal{A}| > t/2$

Actual proof:

 $P[|\mathcal{A} \cap \mathcal{S}| > |\mathcal{P}|] = \sum_{\ell = |\mathcal{P}|+1} P[|\mathcal{A} \cap \mathcal{S}| = \ell]$

Notation:

• $\mathcal{A}/\mathcal{P}/\mathcal{H}$ = active/passive cheaters, and honest players where (wlog) $|\mathcal{A}| + |\mathcal{P}| = t$ and $|\mathcal{H}| = t+1$

• S = players that survive checking phase ($\mathcal{P}, \mathcal{H} \subseteq S$)

Observations:

- Error probability given by $\delta = P[|A \cap S| > |P|]$
- $\delta = 0$ if $|\mathcal{A}| \leq |\mathcal{P}|$. Thus: may assume $a := |\mathcal{A}| > t/2$

Actual proof:

 $P[|\mathcal{A} \cap \mathcal{S}| > |\mathcal{P}|] = \sum_{\ell = |\mathcal{P}|+1} P[|\mathcal{A} \cap \mathcal{S}| = \ell]$ $\leq \sum_{\ell} P[\exists \mathcal{A}' \in \binom{\mathcal{A}}{\ell} \forall i \in \mathcal{A}' \ \exists \mathcal{H}' \in \binom{\mathcal{H}}{a-\ell+1} \forall j \in \mathcal{H}': y_{ij} = MAC_{\kappa_{ji}}(\hat{s}_i)]$

Notation:

• $\mathcal{A}/\mathcal{P}/\mathcal{H}$ = active/passive cheaters, and honest players where (wlog) $|\mathcal{A}| + |\mathcal{P}| = t$ and $|\mathcal{H}| = t+1$

• S = players that survive checking phase ($\mathcal{P}, \mathcal{H} \subseteq S$)

Observations:

- Error probability given by $\delta = P[|A \cap S| > |P|]$
- $\delta = 0$ if $|\mathcal{A}| \leq |\mathcal{P}|$. Thus: may assume $a := |\mathcal{A}| > t/2$

Actual proof:

 $P[|\mathcal{A} \cap \mathcal{S}| > |\mathcal{P}|] = \sum_{\ell = |\mathcal{P}|+1} P[|\mathcal{A} \cap \mathcal{S}| = \ell] \qquad P[...] \le \varepsilon$ $\le \sum_{\ell} P[\exists \mathcal{A}' \in \begin{pmatrix} \mathcal{A} \\ \ell \end{pmatrix} \forall i \in \mathcal{A}' \ \exists \mathcal{H}' \in \begin{pmatrix} \mathcal{H} \\ a - \ell + 1 \end{pmatrix} \forall j \in \mathcal{H}' \quad y_{ij} = MAC_{\kappa_{ji}}(\hat{s}_i)]$

Notation:

• $\mathcal{A}/\mathcal{P}/\mathcal{H}$ = active/passive cheaters, and honest players where (wlog) $|\mathcal{A}| + |\mathcal{P}| = t$ and $|\mathcal{H}| = t+1$

• S = players that survive checking phase ($\mathcal{P}, \mathcal{H} \subseteq S$)

Observations:

- Error probability given by $\delta = P[|A \cap S| > |P|]$
- $\delta = 0$ if $|\mathcal{A}| \leq |\mathcal{P}|$. Thus: may assume $a := |\mathcal{A}| > t/2$

Actual proof:

 $P[|\mathcal{A} \cap \mathcal{S}| > |\mathcal{P}|] = \sum_{\ell = |\mathcal{P}|+1} P[|\mathcal{A} \cap \mathcal{S}| = \ell] \qquad P[...] \le \varepsilon$ $\leq \sum_{\ell} P[\exists \mathcal{A}' \in \binom{\mathcal{A}}{\ell} \forall i \in \mathcal{A}' \ \exists \mathcal{H}' \in \binom{\mathcal{H}}{a-\ell+1} \forall j \in \mathcal{H}' \forall i = MAC_{\kappa_{ji}}(\hat{s}_{i})]$ $\leq \sum_{\ell} \sum_{\mathcal{A}' \in \binom{\mathcal{A}}{\ell}} P[\forall i \in \mathcal{A}' \ \exists ... \forall ...]$

Notation:

• $\mathcal{A}/\mathcal{P}/\mathcal{H}$ = active/passive cheaters, and honest players where (wlog) $|\mathcal{A}| + |\mathcal{P}| = t$ and $|\mathcal{H}| = t+1$

• S = players that survive checking phase ($\mathcal{P}, \mathcal{H} \subseteq S$)

Observations:

- Error probability given by $\delta = P[|A \cap S| > |P|]$
- $\delta = 0$ if $|\mathcal{A}| \leq |\mathcal{P}|$. Thus: may assume $a := |\mathcal{A}| > t/2$

Actual proof:

$$\begin{split} P[|\mathcal{A} \cap \mathcal{S}| > |\mathcal{P}|] &= \sum_{\ell = |\mathcal{P}|+1}^{\infty} P[|\mathcal{A} \cap \mathcal{S}| = \ell] \\ &\leq \sum_{\ell} P[\exists \mathcal{A}' \in \binom{\mathcal{A}}{\ell}) \ \forall i \in \mathcal{A}' \ \exists \mathcal{H}' \in \binom{\mathcal{H}}{a-\ell+1} \ \forall j \in \mathcal{H}' \ \underbrace{y_{ij} = MAC_{\kappa_{ji}}(\hat{s}_i)}] \\ &\leq \sum_{\ell} \sum_{\mathcal{A}' \in \binom{\mathcal{A}}{\ell}} P[\forall i \in \mathcal{A}' \ \exists \dots \forall \dots] \ \leq \sum_{\ell} \sum_{\mathcal{A}' \in \binom{\mathcal{A}}{\ell}} \prod_{i \in \mathcal{A}'} P[\exists \dots \forall \dots] \leq \dots \end{split}$$

Notation:

• $\mathcal{A}/\mathcal{P}/\mathcal{H}$ = active/passive cheaters, and honest players where (wlog) $|\mathcal{A}| + |\mathcal{P}| = t$ and $|\mathcal{H}| = t+1$

• S = players that survive checking phase ($\mathcal{P}, \mathcal{H} \subseteq S$)

Observations:

- Error probability given by $\delta = P[|A \cap S| > |P|]$
- $\delta = 0$ if $|\mathcal{A}| \leq |\mathcal{P}|$. Thus: may assume $a := |\mathcal{A}| > t/2$

Actual proof:

$$\begin{split} P[|\mathcal{A} \cap \mathcal{S}| > |\mathcal{P}|] &= \sum_{\ell=|\mathcal{P}|+1}^{\infty} P[|\mathcal{A} \cap \mathcal{S}| = \ell] \\ &\leq \sum_{\ell} P[\exists \mathcal{A}' \in \binom{\mathcal{A}}{\ell}) \ \forall i \in \mathcal{A}' \ \exists \mathcal{H}' \in \binom{\mathcal{H}}{a-\ell+1} \ \forall j \in \mathcal{H}' \underbrace{y_{ij} = MAC_{\kappa_{ji}}(\hat{s}_i)}] \\ &\leq \sum_{\ell} \sum_{\mathcal{A}' \in \binom{\mathcal{A}}{\ell}} P[\forall i \in \mathcal{A}' \ \exists \dots \forall \dots] \ \leq \sum_{\ell} \sum_{\mathcal{A}' \in \binom{\mathcal{A}}{\ell}} \prod_{i \in \mathcal{A}'} P[\exists \dots \forall \dots] \leq \dots \\ &\leq \sum_{\ell} \binom{a}{\ell} \cdot \left(\binom{t+1}{a-\ell+1} \cdot \varepsilon^{a-\ell+1}\right)^{\ell} \end{split}$$

Notation:

• $\mathcal{A}/\mathcal{P}/\mathcal{H}$ = active/passive cheaters, and honest players where (wlog) $|\mathcal{A}| + |\mathcal{P}| = t$ and $|\mathcal{H}| = t+1$

• S = players that survive checking phase ($\mathcal{P}, \mathcal{H} \subseteq S$)

Observations:

- Error probability given by $\delta = P[|A \cap S| > |P|]$
- $\delta = 0$ if $|\mathcal{A}| \leq |\mathcal{P}|$. Thus: may assume $a := |\mathcal{A}| > t/2$

Actual proof:

$$\begin{split} P[|\mathcal{A} \cap \mathcal{S}| > |\mathcal{P}|] &= \sum_{\ell=|\mathcal{P}|+1}^{\infty} P[|\mathcal{A} \cap \mathcal{S}| = \ell] \\ &\leq \sum_{\ell} P[\exists \mathcal{A}' \in \binom{\mathcal{A}}{\ell}) \ \forall i \in \mathcal{A}' \ \exists \mathcal{H}' \in \binom{\mathcal{H}}{a-\ell+1} \ \forall j \in \mathcal{H}' \underbrace{y_{ij} = MAC_{\kappa_{ji}}(\hat{s}_i)}] \\ &\leq \sum_{\ell} \sum_{\mathcal{A}' \in \binom{\mathcal{A}}{\ell}} P[\forall i \in \mathcal{A}' \ \exists \dots \forall \dots] \ \leq \sum_{\ell} \sum_{\mathcal{A}' \in \binom{\mathcal{A}}{\ell}} \prod_{i \in \mathcal{A}'} P[\exists \dots \forall \dots] \leq \dots \\ &\leq \sum_{\ell} \binom{a}{\ell} \cdot \left(\binom{t+1}{a-\ell+1} \cdot \varepsilon^{a-\ell+1}\right)^{\ell} \ \leq \dots \leq e \cdot ((t+1) \cdot \varepsilon)^{(t+1)/2} \end{split}$$

Summary

First robust secret sharing scheme for n=2t+1 , with

- small overhead $O(k+n \cdot \log n)$ in share size
- efficient sharing and reconstruction procedures
- Scheme is simple and natural adaptation of Rabin & Ben-Or
- Proof is non-standard and non-trivial

Summary

First robust secret sharing scheme for n=2t+1 , with

- small overhead $O(k+n \cdot \log n)$ in share size
- efficient sharing and reconstruction procedures
- Scheme is simple and natural adaptation of Rabin & Ben-Or
- Proof is non-standard and non-trivial
- Gpen problem:
 - Scheme with overhead O(k) (= proven lower bound)
- Solution Note:
 - All known schemes have a $\Omega(n)$ gap (for different reasons)
 - Not known if this is inherent or not.

Summary

First robust secret sharing scheme for n=2t+1 , with

- small overhead $O(k+n \cdot \log n)$ in share size
- efficient sharing and reconstruction procedures
- Scheme is simple and natural adaptation of Rabin & Ben-Or
- Proof is non-standard and non-trivial
- Gpen problem:
 - Scheme with overhead O(k) (= proven lower bound)
- Note:
 All kr
 Not k

 THANK YOU
 t reasons)