|\ CWL_

Unconditionally-Secure Robust Secret Sharing

with Compact Shares

Serge Fehr
CWI Amsterdam

www.cwi.nl/~fehr

Alfonso Cevallos Rafail Ostrovsky Yuval Rabani

Leiden University UCLA Hebrew University of Jerusalem

http://www.cwi.nl/~fehr
http://www.cwi.nl/~fehr
http://www.cs.ucla.edu/~rafail/
http://www.cs.ucla.edu/~rafail/
http://www.cs.huji.ac.il/~yrabani/
http://www.cs.huji.ac.il/~yrabani/

(t-out-of-n) Secret Sharing

secret: S

B .

shares: S e G
¢ Privacy: any t shares give no information on s
e e e e

¥ Reconstructability: any t+1 shares uniquely determine s

Jiine So e S s S

Shamir's Secret Sharing Scheme [Sha79]

secret: secl¥

* s e o R

shares: §1 = f(fbl) Sp = f(xn)

¢ Privacy and reconstructability follow from Lagrange interpolation

Shamir's Secret Sharing Scheme [Sha79]

secret: secl¥

* s e o R

shares: §1 = f(fbl) Sp = f(xn)

¢ Privacy and reconstructability follow from Lagrange interpolation

¢ Here and in general:
reconstructability requires correct shares

Robust Secret Sharing

secret: S

B .

shares: S e G

¢ Privacy: any t shares give no information on s

5 = 7

¢ Reconstructability: any ¢+1 shares uniquely determine s

S1 e Sl =P S

Robust Secret Sharing

secret: S Note:
assume dealer to be honest
‘ “RRR——

shares: SRS e G

¢ Privacy: any t shares give no information on s

5 = 7

¢ Robust reconstructability:
the set of all n shares determines s, even if ¢t of them are faulty

A

§1 -+ S St41 - Sp =P S

Application: Secure Data Storage

i
® N

data
TXT

user

servers

Application: Secure Data Storage

Servers

Application: Secure Data Storage

servers

Application: Secure Data Storage

servers

(Im)possibility

I I I
0 \ n/3 \n/ 2 n
plain Shamir sharing
additional checking data needed,
positive error probability: 2+

t

plus RS decoding,
no error probability

(Im)possibility

This work: n = 2{+1, with unconditional security

T —

easy | tricky impossible

0 \ T g < n

additional checking data needed,
positive error probability: 2+

plain Shamir sharing
plus RS decoding,
no error probability

Known Results vs Our Result

¢ Rabin & Ben-Or (1989):

® Overhead in share size: O(k-nlogn) ®
® Computational complexity: poly(k,n) ®

Known Results vs Our Result

¢ Rabin & Ben-Or (1989):

® Overhead in share size: O(k-nlogn) ®
® Computational complexity: poly(k,n) ®

€ Cramer & F (2001), based on Cabello, Padro & Saez (1999),
generalized by Kurosawa & Suzuki (2009):

® Overhead in share size: O(k+n) © (lower bound: £2(k))
® Computational complexity: exp(n) ®

Known Results vs Our Result

¢ Rabin & Ben-Or (1989):

® Overhead in share size: O(k-n-logn) ®
® Computational complexity: poly(k,n) G

€ Cramer & F (2001), based on Cabello, Padro & Saez (1999),
generalized by Kurosawa & Suzuki (2009):

® Overhead in share size: O(k+n) © (lower bound: £2(k))
® Computational complexity: exp(n) ®

€ Our new scheme:

® Overhead in share size: O(k+n-logn) ©
® Computational complexity: poly(k,n) ©

Further Outline

¢

¥ The (simple) case ¢t < n/3

¢ The Rabin & Ben-Or scheme
¢ Our scheme

¢ Difficulties of the proof

€ Conclusion

The (Simple) Case n = 3t+1

se ¥
* f(X) = s+ a1 X+...+ X! € F[X]

81=f($1) S e o O e | o e L S S)

The (Simple) Case n = 3t+1

scl¥
* f(X) = s+ a1 X+...+a X! € F[X]

51:f($1) = o St+2 + S2t+1 S

The (Simple) Case n = 3t+1

se ¥
* f(X) =s+a1X+...+ X! € F[X]
S]_:f(m]_) o oo 8t_|_]_ 8t+2 o o 82t+1 §n—t—|—1 T ene) ; \

\

t+1 correct shares
-> determines f

The (Simple) Case n = 3t+1

se ¥ |
* f(X) = s+ a1 X+...+ X! € F[X]

81=f($1) o | S SO o P o O = S g M
\ \ : |
t+1 correct shares r=t redundant

-> determines f correct shares

The (Simple) Case n = 3t+1

se ¥ |
* f(X) = s+ a1 X+...+ X! € F[X]

S1=f($1) o | S SO §n—t+1 §n M
\ \ \ iy~ ¢

t+1 correct shares r=t redundant
-> determines f correct shares

e=t faulty shares

The (Simple) Case n = 3t+1

se ¥
* f(X) = s+ a1 X+...+ X! € F[X]

si=flm) - S St+2 o+ 2441 Sptrl -+ S M
\ \ \ '

t+1 correct shares r=t redundant
-> determines f correct shares

e=t faulty shares

Reed-Solomon decoding: If ¢ < r (satisfied here) then

® fis uniquely determined from s,...,5,
® fcan be efficiently computed (Berlekamp-Welch)

The Rabin & Ben-Or Scheme (n = 2¢+1)

sel¥

Sharing phase: - 00— e e o e
| |

K11 Y11 Ri Y Rl Yj Kn1 UYnl
: : Ky Y
Kij Yy : :

Rin UYin Kin UYin Kijn Yijn Knn Ynn

The Rabin & Ben-Or Scheme (n = 2¢+1)

Sharing phase: € If
S
|

si=f{z1)

K11 Y11 Ka Yl Rl Yj Knl Ynl

ki i) = yij = MACrj(si) i

i Kin Yin Kin Yjn | J—

The Rabin & Ben-Or Scheme (n = 2¢+1)

-

Sharing phase: e L
* fX) = star X+ ...+ Xt € F[X]
Si=Vicu) S; S S,
K11 Iy11 Kl | yil I<Jj1I y:ﬂ IimI UYni
: : Kiji) Yji \
o By @/G y] yij = MACr;(si) 3
Kin UYin /ﬁ:m ym /ﬁ'/.jn y}n TR

¥ MAC security: for any s = si and 9 : Py = MACk;(5)] < €.
¥ Example: kij= (ai,0i5) € F2 and yij = MACk;(si) = aij-si + B

$ For error probability € < 2% :
® bit size |ki|,|yis| > k
® overhead per share (above Shamir share): 2(k-n)

The Rabin & Ben-Or Scheme (n = 2¢+1)

sel¥

|

K11 Y11 Ri Y Rl Yj Kn1 UYnl
Kin UYin fin Yin Kin Yin """W‘#frm

Reconstruction phase:
1. For every share si: accept si iff it is approved by > t+1 players,

(meaning #{j| yij = MACk;(si)} > t+1)
2.Reconstruct s using the accepted shares s;.

The Rabin & Ben-Or Scheme (n = 2¢+1)

Sharing phase: € If
S
|

si=f{z1)

K11 Y11 Ka Yl Rl Yj Knl Ynl

ki i) = yij = MACrj(si) i

i Kin Yin Kin Yjn | J—

Our New Scheme

Sharing phase: -
QR 9-Rad-c: iy e Y
I I I I

K11 Y11 Ka Yl Rl Yj Knl Ynl

i Kin Yin Kin Yjn | J—

Our New Scheme

Sharing phase:

=|91=f(331)

K11 Y

Rin yln

se ¥
*
S;

fiX)=s+a1X+...+a:X? € FX]

KRi1 Yi

Rja Y

T —

yij = MACr(si) i

¥ Use small tags and keys |rql,|ysl = O(k/n+1) (instead of O(k))
¥ Gives: overhead per share: n-O(k/n+1) = O(k+n)

Our New Scheme

Sharing phase:

si=fa1)

K11 Y

Rin yln

se ¥
*
S;

fiX)=s+a1X+...+a:X? € FX]
Sj Sn

KRi1 Yi

K1 Yj

Kjn Yjn

“——

Rnl ynl

¥ Use small tags and keys |rql,|ysl = O(k/n+1) (instead of O(k))
¥ Gives: overhead per share: n-O(k/n+1) = O(k+n)

¢ Problem:

® MAC has weak security
® incorrect shares may be approved by some honest players
® Rabin & Ben-Or reconstruction fails

Our New Scheme

Sharing phase:

si=fz1)

o] S YA

Kin yln

se ¥
g
S;

Ria Yl

Kj Yj

Kin UYin

RKijn Yjn

fiX)=s+a1X+...+aX! € FX]
5]' 5

T——

Knl UYnl

Yijg = MA C/{ji(Si) i

¥ Use small tags and keys |xi,|ys| = O(k/n+1) (instead of O(k))
¥ Gives: overhead per share: n-O(k/n+1) = O(k+n)

¢ Problem
s MAC - Need: better recons

truction procedure

s incorrQEMMBTES ™Ay be approved by some honest players
® Rabin & Ben-Or reconstruction fails

How to Reconstruct

¢ Example: Say that
A= e S = A

How to Reconstruct

¢ Example: Say that
x {]’ Yij :MACKLﬂ(Sl)} = {1,...,77,} -> accepf S

How to Reconstruct

¢ Example: Say that
¥ {] Yij :MACKle(Sl)} a {1,...,77,} =0 accepf S1
® (jlyos = MACkp(s2)} = {1,...,t+1}

How to Reconstruct

¢ Example: Say that
¥ {] Yij :MACKLﬂ(Sl)} a {1,...,77,} =0 accepf S1
® |y =MACky(s2)} = {1,...,t+1} -> accept

How to Reconstruct

¢ Example: Say that
A= e S = A -> accept si
® [4lyj =MACkp(s2)} = {1,...,t+1} -> accept
s e VA C R s (e =) ol

How to Reconstruct

¢ Example: Say that
A= e S = A -> accept si
® [4lyj =MACkp(s2)} = {1,...,t+1} -> accept
8 [jlysi = MACkz(s3)} = {2,...,t+1} -> reject s3

S

How to Reconstruct

¢ Example: Say that
A= e S = A -> accept si
® [4lyj =MACkp(s2)} = {1,...,t+1} -> accept
* Ulysi=MACkz(s)) = {2, tF1} —> reject s

S

O

¥ 5 is approved by <t honest players (as player 3 is dishonest)
=> 5 stems from dishonest player

How to Reconstruct

¢ Example: Say that
A= e S = A -> accept si
® [4lyj =MACkp(s2)} = {1,...,t+1} -> accept
: {j Y3j :MAClijS(SS)} = {2,...,t—|—1} -> reject s3

S

¥ 5 is approved by <t honest players (as player 3 is dishonest)
=> 5 stems from dishonest player

¢ Rabin & Ben-Or reconstruction: accepts

How to Reconstruct

¢ Example: Say that
A= e S = A -> accept si
® [4lyj =MACkp(s2)} = {1,...,t+1} -> accept
: {j Y3j :MAC/@:;(S?))} = {2,...,t—|—1} -> reject s3

S

¥ 5 is approved by < t honest players (as player 3 is dishonest)
=> 5 stems from dishonest player

¢ Rabin & Ben-Or reconstruction: accepts

€ Our new reconstruction: will rejects

How to Reconstruct

¢ Example: Say that
* {7y :MACKDﬂ(Sl)} = -> accept si

=3 Rabin & Ben-Or reconstruction:

S ,
t Accept every share s; that is approved

by t+1 players.

S

*€c

S . dishonest
Our new reconstruction:)

=2

- Accept every share s; that is approved
¢ Rabir

by t+1 players with accepted shares.

€ Our

How to Reconstruct

¢ Example: Say that
* {7y :MACKDﬂ(Sl)} = -> accept si

=3 Rabin & Ben-Or reconstruction:

S ,
t Accept every share s; that is approved

by t+1 players.

S

*€c

S . dishonest
Our new reconstruction:)

=2

- Accept every share s; that is approved
¢ Rabir

by t+1 players with accepted shares.

€ Our

Plus: Reed-Solomon decoding.

AR —

Our New Reconstruction Procedure

(Eni)=Set= Goods— 1.}

(Loop) For every 1€ Good:

if #{j € Good |y = MACk;(s:)} < t then
- set Good := Good \{i}
— redo (Loop)

(BEc)e Ser - lecd-Solowman 5 00

Our New Reconstruction Procedure

(CRIEEESES el " = {17771
(Loop) For every i€ Good:

if #{j € Good |y = MACk;(s:)} < t then
- set Good := Good \{i}
— redo (Loop)

(BEc)e Ser - lecd-Solowman 5 00

Our New Reconstruction Procedure

(CRIEEESES el " = {17771
(Loop) For every i€ Good:

= <‘b 1] = MA C/Q]Z(Sz)} S t then
- set Good:= Good \N{i}
— redo (Loop)

(BEc)e Ser - lecd-Solowman 5 00

Our New Reconstruction Procedure

- redo (Ldop)‘

(BEc)e Ser - lecd-Solowman 5 00

Our New Reconstruction Procedure

(Init) Set = {1

(Loop) For every zEGoad

. Y _ﬂMACKJ]z(SZ)} < t then

if #),
R st _V GOOd \{7[

—fredo (Loop:‘

(BEc)e Ser - lecd-Solowman 5 00

Our New Reconstruction Procedure

—‘redo(Lébp"

(BEc)e Ser - lecd-Solowman 5 00

" Mai | "

Main Theorem. If MAC is s-secure then our scheme is -robust with

6 < e((t+1)-e)t+1)/2 (Where e=exp(1)).
b o

Our New Reconstruction Procedure

'

Main Theorem. If MAC is s-secure then our scheme is -robust with

(Dec)

—‘redo(Lébp"

Set s:= Reed-Solomon({s; }icGood})

5 < e((t41)e)+)/2

(Where e=exp(1)).

3

b
r

Corollary. Using MAC with |kil,|yi5| = O(k/n+logn) gives

b

5 < 21k

4
3

What Makes the Proof Tricky

What Makes the Proof Tricky

e

1. Optimal strategy for dishonest players is unclear

¢ In Rabin & Ben-Or: an incorrect share for every dishonest player

¥ Here: some dishonest players may hand in correct shares

What Makes the Proof Tricky

R

1. Optimal strategy for dishonest players is unclear

@)

¢ In Rabin & Ben-Or: an incorrect share for every dishonest player

¥ Here: some dishonest players may hand in correct shares

@)

¢ Such a dishonest player:
® stays in Good
® can support (i.e. vote for) bad shares

*€c

such dishonest players:
® the easier it gets for bad shares to survive

® the more bad shares have to survive to fool RS decoding
(# bad shares >)

¢ Optimal trade-off: unclear

What Makes the Proof Tricky

2. Circular dependencies

¢ Whether s gets accepted depends on whether S gets accepted ...

What Makes the Proof Tricky

2. Circular dependencies

¢ Whether s gets accepted depends on whether S gets accepted ...

¢ .. and vice versa
¢ Cannot analyze individual bad shares

¢ If we try, we run into a circularity

The Proof

Notation:
s A/P/H = active/passive cheaters, and honest players
where (wlog) |A|+|P| = t and [H| = t+1
® S = players that survive checking phase (P,;HCS)

The Proof

Notation:
s A/P/H = active/ cheaters, and honest players
where (wlog) |A|+|7| = ¢t and [H| = t+1

® S = players that survive checking phase (7,HCS)

Observations:
® Error probability given by 6 = P[|ANS| > |7|]
o 5=0if |A| < |P|. Thus: may assume a :=|A| > t/2

The Proof

Notation:
s A/P/H = active/ cheaters, and honest players
where (wlog) |A|+|7| = ¢t and [H| = t+1

® S = players that survive checking phase (7,HCS)

Observations:
® Error probability given by 6 = P[|ANS| > |7|]
o 5=0if |A| < |P|. Thus: may assume a :=|A| > t/2

Actual proof: :
R e e e —

0=|P|+1

The Proof

Notation:
s A/P/H = active/ cheaters, and honest players
where (wlog) |A|+|7| = ¢t and [H| = t+1

® S = players that survive checking phase (7,HCS)

Observations:
® Error probability given by 6 = P[|ANS| > |7|]
o 5=0if |A| < |P|. Thus: may assume a :=|A| > t/2

Actual proof: a
PIlANS|>[P|] = 2 P[]ANS|= £]

=g
= ZP JA'€(F) VieA IHe(, 5. .) VIeH’ ys = MACK:(5) |

The Proof

Notation:
s A/P/H = active/ cheaters, and honest players
where (wlog) |A|+|7| = ¢t and [H| = t+1

® S = players that survive checking phase (7,HCS)

Observations:
® Error probability given by 6 = P[|ANS| > |7|]
o 5=0if |A| < |P|. Thus: may assume a :=|A| > t/2

Actual proof: a
PIlANS|>[P|] = 2 P[]ANS|= £]

=i
< ZP J A’ e(“zl) VicA' IAH'¢c (a—7+1) VieH' Gy =

The Proof

Notation:
s A/P/H = active/ cheaters, and honest players
where (wlog) |A|+|P| = t and [H| = t+1

® S = players that survive checking phase (7,HCS)

Observations:
® Error probability given by 6 = P[|ANS| > |7|]
o 5=0if |A| < |P|. Thus: may assume a :=|A| > t/2

Actual proof:
PlIANS|>[Pl] = X PllAN S| = ¢]

0=|P|+1

< ZP J A’ e(“zl) VicA' IAH'¢c (a—7+1) VieH'Cyij =

< FD PG A

¢ Ae(y)

The Proof

Notation:
s A/P/H = active/ cheaters, and honest players
where (wlog) |A|+|P| = t and [H| = t+1

® S = players that survive checking phase (7,HCS)

Observations:
® Error probability given by 6 = P[|ANS| > |7|]
o 5=0if |A| < |P|. Thus: may assume a :=|A| > t/2

Actual proof:
PIIANS|> |Pl] = S P ANS] = ¢] Pl.]<e

0=|P|+1

= ZP JAe(y) YieA IH'e(,_

E 2 e e

¢ Ae(y)

The Proof

Notation:
s A/P/H = active/ cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

® S = players that survive checking phase (7,H CS)

Observations:
® Error probability given by 6 = P[|ANS| > |7|]
o 5=0if |A| < |P|. Thus: may assume a :=|A| > t/2

Actual proof:
PlIANS|>[Pl] = X PllAN S| = ¢]

0=|P|+1

=2 Ae(?)) Vied IH'e(,_

<25ﬁWmW3JWJS;,

¢ Ae(y)

<2 (§)-((olex1)-en)

The Proof

Notation:
s A/P/H = active/ cheaters, and honest players
where (wlog) |A|+|P| = t and |H| = t+1

® S = players that survive checking phase (7,H CS)

Observations:
® Error probability given by 6 = P[|ANS| > |7|]
o 5=0if |A| < |P|. Thus: may assume a :=|A| > t/2

Actual proof:
PlIANS|>[Pl] = X PllAN S| = ¢]

0=|P|+1

=2 Ae(?)) Vied IH'e(,_

<25ﬁWmW3JWJS;,

¢ Ae(y)

<3 (g)-((o2og1)-e) < <ol

Summary

¢ First robust secret sharing scheme for n = 2¢+1 , with
® small overhead O(k+n-logn) in share size
® efficient sharing and reconstruction procedures

¢ Scheme is simple and natural adaptation of Rabin & Ben-Or

€ Proof is non-standard and non-trivial

Summary

¢ First robust secret sharing scheme for n = 2¢+1 , with
® small overhead O(k+n-logn) in share size
® efficient sharing and reconstruction procedures

¢ Scheme is simple and natural adaptation of Rabin & Ben-Or

€ Proof is non-standard and non-trivial

¢ Open problem:
® Scheme with overhead O(k) (= proven lower bound)

¢ Note:
® All known schemes have a {2(n) gap (for different reasons)
® Not known if this is inherent or not.

Summary

¢ First robust secret sharing scheme for n = 2¢+1 , with
® small overhead O(k+n-logn) in share size
® efficient sharing and reconstruction procedures

¢ Scheme is simple and natural adaptation of Rabin & Ben-Or

€ Proof is non-standard and non-trivial

¢ Open problem:
® Scheme with overhead O(k) (= proven lower bound)

¢ Note: \
s All kr

s Not k THANK YOU
—

t reasons)

