Scalable Group Signature with Revocation

Benoit Libert¹, Thomas Peters¹, Moti Yung²

1 - Université catholique de Louvain, Crypto Group (Belgium) 2 - Columbia University and Google Inc. (USA)

Eurocrypt - 18th April 2012

UCL Crypto Group

Security Model

Fully anonymous signature on behalf of a group

Users' signatures are anonymous and unlinkable

Non-misidentification of a group signature

 Infeasibility of producing a signature which traces outside the set of unrevoked corrupted users

Non-frameability of a group signature

Infeasibility of claiming falsely that a member produced a given signature

- Chaum-van Heyst (Eurocrypt'91): allow registered group members to sign messages while remaining anonymous
- Ateniese-Camenisch-Joye-Tsudik (Crypto'00): a scalable coalition-resistant construction...but analyzed *w.r.t.* a list of security requirements
- Bellare-Micciancio-Warinschi (Eurocrypt'03): security model; construction based on general assumptions
- Bellare-Shi-Zhang (CT-RSA'05), Kiayias-Yung (J. of Security and Networks 2006): extensions to dynamic groups
- Boyen-Waters (Eurocrypt'06 PKC'07), Groth (Asiacrypt'06 '07): in the standard model

- Chaum-van Heyst (Eurocrypt'91): allow registered group members to sign messages while remaining anonymous
- Ateniese-Camenisch-Joye-Tsudik (Crypto'00): a scalable coalition-resistant construction... but analyzed *w.r.t.* a list of security requirements
- Bellare-Micciancio-Warinschi (Eurocrypt'03): security model; construction based on general assumptions
- Bellare-Shi-Zhang (CT-RSA'05), Kiayias-Yung (J. of Security and Networks 2006): extensions to dynamic groups
- Boyen-Waters (Eurocrypt'06 PKC'07), Groth (Asiacrypt'06 '07): in the standard model

- Chaum-van Heyst (Eurocrypt'91): allow registered group members to sign messages while remaining anonymous
- Ateniese-Camenisch-Joye-Tsudik (Crypto'00): a scalable coalition-resistant construction... but analyzed *w.r.t.* a list of security requirements
- Bellare-Micciancio-Warinschi (Eurocrypt'03): security model; construction based on general assumptions
- Bellare-Shi-Zhang (CT-RSA'05), Kiayias-Yung (J. of Security and Networks 2006): extensions to dynamic groups
- Boyen-Waters (Eurocrypt'06 PKC'07), Groth (Asiacrypt'06 '07): in the standard model

Revocation in Group Signatures

- Trivial approach: O(N r) cost for the GM at each revocation
- Bresson-Stern (PKC'01): signature size and signing cost in O(r)
- Brickell and Boneh-Shacham (CCS'04): verifier-local revocations, linear verification in $\mathcal{O}(r)$
- Nakanishi-Fuji-Hira-Funabiki (PKC'09): O(1)-cost signing and verification time but O(N)-size group public keys
- Camenisch-Lysyanskaya (Crypto'02): based on accumulators, optimal asymptotic efficiency but requires users
 - ► To update their credentials at *every* revocation
 - To know of all changes in the population of the group

Revocation in Group Signatures

- Trivial approach: O(N r) cost for the GM at each revocation
- Bresson-Stern (PKC'01): signature size and signing cost in O(r)
- Brickell and Boneh-Shacham (CCS'04): verifier-local revocations, linear verification in $\mathcal{O}(r)$
- Nakanishi-Fuji-Hira-Funabiki (PKC'09): O(1)-cost signing and verification time but O(N)-size group public keys
- Camenisch-Lysyanskaya (Crypto'02): based on accumulators, optimal asymptotic efficiency but requires users
 - To update their credentials at every revocation
 - To know of all changes in the population of the group

Current Situation

Despite 20 years of research

- No system has a mechanism where the revocation is truly scalable (contrast with CRLs in regular signatures)
- Situation is only worse in schemes in the standard model (e.g., pairing-based accumulators do not always scale well)

We take a different approach

- Develop a revocation technique inspired by broadcast encryption!
- Start from an existing revocation structure an adapt it (algebraically) in the group signature scenario

Current Situation

Despite 20 years of research

- No system has a mechanism where the revocation is truly scalable (contrast with CRLs in regular signatures)
- Situation is only worse in schemes in the standard model (e.g., pairing-based accumulators do not always scale well)

We take a different approach

- Develop a revocation technique inspired by broadcast encryption!
- Start from an existing revocation structure an adapt it (algebraically) in the group signature scenario

Scalable Group Signature with Revocation

Features

- History-independent revocation/verification
- Provable in the standard model (*i.e.*, *no random oracle*)

- Signature size / Verification cost in $\mathcal{O}(1)$
- Revocation list of size $\mathcal{O}(r)$ as in standard PKIs
- All other algorithms at most poly-log in A

Scalable Group Signature with Revocation

Features

- History-independent revocation/verification
- Provable in the standard model (*i.e.*, no random oracle)

- Signature size / Verification cost in $\mathcal{O}(1)$
- Revocation list of size $\mathcal{O}(r)$ as in standard PKIs
- All other algorithms at most poly-log in N

Scalable Group Signature with Revocation

Features

- History-independent revocation/verification
- Provable in the standard model (*i.e.*, no random oracle)

- Signature size / Verification cost in $\mathcal{O}(1)$
- Revocation list of size $\mathcal{O}(r)$ as in standard PKIs
- All other algorithms at most poly-log in N

Scalable Group Signature with Revocation

Features

- History-independent revocation/verification
- Provable in the standard model (*i.e.*, no random oracle)

- Signature size / Verification cost in $\mathcal{O}(1)$
- Revocation list of size $\mathcal{O}(r)$ as in standard PKIs
- All other algorithms at most poly-log in N

New Approach

Using the Naor-Naor-Lotspiech framework (Crypto'01):

- Broadcast (symmetric) encryption/revocation
 - Public-key variant due to Dodis-Fazio (DRM'02)
- Members are assigned to a leaf and belong to several subsets
- Subset Cover: find a cover S_1, \ldots, S_m of the unrevoked set $N \setminus R$

Using NNL in the public-key setting (Dodis-Fazio, DRM'02):

- Subset Difference (SD) method
 - Each *S_i* is the difference between two subtrees
 - Uses Hierarchical Identity-Based Encryption (HIBE): each node obtains a decryption key from its father
 - $\mathcal{O}(r)$ -size ciphertexts and $\mathcal{O}(\log^3 N)$ private keys

$New \ Approach$

Using NNL in the public-key setting (Dodis-Fazio, DRM'02):

- Subset Difference (SD) method
 - Each *S_i* is the difference between two subtrees
 - Uses Hierarchical Identity-Based Encryption (HIBE): each node obtains a decryption key from its father
 - $\mathcal{O}(r)$ -size ciphertexts and $\mathcal{O}(\log^3 N)$ private keys

NNL-Based Revocation in Group Signatures

Broadcast encryption ciphertext is turned into a revocation list RL

 \Rightarrow *RL* is a set of HIBE ciphertexts C_1, \ldots, C_m

- Signers prove their non-revocation in 3 steps
 - 1. Commit to the HIBE ciphertext C_i they can decrypt
 - 2. Prove that $C_i \in RL$ (set membership proof)
 - 3. Prove their ability to decrypt the committed C_i

Naor-Naor-Lotspiech framework... Revocable Group Signature?

- JOIN: new user \mathcal{U} with identity $X (= g^{\times})$
 - Cert(\mathcal{U}) = (σ_0 = Sign(X, D_0), ..., σ_I = Sign(X, D_I))
- REVOKE: group manager GM finds a "subset cover"

 $\blacktriangleright \mathcal{RL}(T = g^t) = (\text{Sign}(C_1, T), \text{Sign}(C_2, T), \text{Sign}(C_3, T))$

Naor-Naor-Lotspiech framework... Revocable Group Signature?

- JOIN: new user \mathcal{U} with identity $X (= g^x)$
 - ► Cert(\mathcal{U}) = (σ_0 = Sign(X, D_0), ..., σ_I = Sign(X, D_I))
- REVOKE: group manager GM finds a "subset cover"

 $\succ \mathcal{RL}(T = g^t) = (\operatorname{Sign}(C_1, T), \operatorname{Sign}(C_2, T), \operatorname{Sign}(C_3, T))$

Naor-Naor-Lotspiech framework... Revocable Group Signature?

• JOIN: new user \mathcal{U} with identity $X (= g^x)$

- $Cert(\mathcal{U}) = (\sigma_0 = Sign(X, D_0), \ldots, \sigma_l = Sign(X, D_l))$
- REVOKE: group manager GM finds a "subset cover"

▶ $\mathcal{RL}(T = g^t) = (\text{Sign}(C_1, T), \text{Sign}(C_2, T), \text{Sign}(C_3, T))$

Naor-Naor-Lotspiech framework... Revocable Group Signature?

- JOIN: new user \mathcal{U} with identity $X (= g^x)$
 - $Cert(\mathcal{U}) = (\sigma_0 = Sign(X, D_0), \ldots, \sigma_l = Sign(X, D_l))$
- REVOKE: group manager GM finds a *"subset cover"*

 $\succ \mathcal{RL}(T = g^t) = (\text{Sign}(C_1, T), \text{Sign}(C_2, T), \text{Sign}(C_3, T))$

Naor-Naor-Lotspiech framework... Revocable Group Signature?

• JOIN: new user \mathcal{U} with identity $X (= g^x)$

- $Cert(\mathcal{U}) = (\sigma_0 = Sign(X, D_0), \ldots, \sigma_l = Sign(X, D_l))$
- REVOKE: group manager GM finds a "subset cover"

•
$$\mathcal{RL}(T = g^t) = (\text{Sign}(C_1, T), \text{Sign}(C_2, T), \text{Sign}(C_3, T))$$

 $\Rightarrow \mathcal{RL}_t$ is a NNL encryption consisting of $\mathcal{O}(r)$ HIBE ciphertexts

UCL Crypto Group

 $\Rightarrow \mathcal{RL}_t$ is a NNL encryption consisting of $\mathcal{O}(r)$ HIBE ciphertexts

 $\Rightarrow \mathcal{RL}_t$ is a NNL encryption consisting of $\mathcal{O}(\mathbf{r})$ HIBE ciphertexts

 $\Rightarrow \mathcal{RL}_t$ is a NNL encryption consisting of $\mathcal{O}(\mathbf{r})$ HIBE ciphertexts

 $\Rightarrow \mathcal{RL}_t$ is a NNL encryption consisting of $\mathcal{O}(r)$ HIBE ciphertexts

 $\Rightarrow \mathcal{RL}_t$ is a NNL encryption consisting of $\mathcal{O}(r)$ HIBE ciphertexts

UCL Crypto Group

SIGN : unrevoked $\operatorname{\mathcal{U}}$ combines the following techniques

Our NNL-based proofs of non-revocation

- Commit to his related HIBE ciphertext C^(i*)_{HIBE}
 Boneh-Boyen-Goh (Eurocrypt'05): O(1)-size HIBE ciphertexts
- Set membership C^(i*)_{HIBE} ∈ RL_t + ability to decrypt C^(i*)_{HIBE} Abe-Haralambiev-Ohkubo (Crypto'10): structure-preserving sign

Groth's signing technique (Asiacrypt'07)

• One-time signatures, weak Boneh-Boyen signatures CCA-secure tag-based encryption and Groth-Sahai proofs.

 $\operatorname{SIGN}:$ unrevoked $\operatorname{\mathcal{U}}$ combines the following techniques

Our NNL-based proofs of non-revocation

- Commit to his related HIBE ciphertext C^(i*)_{HIBE}
 Boneh-Boyen-Goh (Eurocrypt'05): O(1)-size HIBE ciphertexts
- Set membership $C_{\text{HIBE}}^{(i^*)} \in \mathcal{RL}_t$ + ability to decrypt $C_{\text{HIBE}}^{(i^*)}$ Abe-Haralambiev-Ohkubo (Crypto'10): structure-preserving sign

Groth's signing technique (Asiacrypt'07)

• One-time signatures, weak Boneh-Boyen signatures CCA-secure tag-based encryption and Groth-Sahai proofs.

 $\operatorname{SIGN}:$ unrevoked $\operatorname{\mathcal{U}}$ combines the following techniques

Our NNL-based proofs of non-revocation

- Commit to his related HIBE ciphertext C^(i*)_{HIBE}
 Boneh-Boyen-Goh (Eurocrypt'05): O(1)-size HIBE ciphertexts
- Set membership $C_{\text{HIBE}}^{(i^*)} \in \mathcal{RL}_t$ + ability to decrypt $C_{\text{HIBE}}^{(i^*)}$ Abe-Haralambiev-Ohkubo (Crypto'10): structure-preserving sign

Groth's signing technique (Asiacrypt'07)

• One-time signatures, weak Boneh-Boyen signatures CCA-secure tag-based encryption and Groth-Sahai proofs.

Security

Theorem

The scheme provides security if all these problems are hard

• The q-SFP Problem: given $(g_z, h_z, g_r, h_r, a, \tilde{a}, b, \tilde{b}) \in \mathbb{G}^8$ and tuples $\{(z_j, r_j, s_j, t_j, u_j, v_j, w_j)\}_{j=1}^q$ s.t.

$$e(a, \tilde{a}) = e(g_z, z_j) \cdot e(g_r, r_j) \cdot e(s_j, t_j)$$

$$e(b, \tilde{b}) = e(h_z, z_j) \cdot e(h_r, u_j) \cdot e(v_j, w_j)$$

find a new such tuple (z*, r*, s*, t*, u*, v*, w*) with z* $\neq 1_{\mathbb{G}}$

- The q-Strong Diffie-Hellman Problem: given (g, g^a,...,g^{(a^q}))
 with a ^R Z_p, find a pair (g^{1/(a+s)}, s) ∈ G × Z_p
- The Decision Linear Problem: given $(g^a, g^b, g^{ac}, g^{bd}, \eta)$, decide whether $\eta = g^{c+d}$ or $\eta \in_R \mathbb{G}$

Efficiency of the SD-Based Scheme

Asymptotic Complexity

- $\mathcal{O}(1)$ -size signatures and $\mathcal{O}(1)$ verification time
- $\mathcal{O}(r)$ -size revocation lists at each period as in standard PKIs
- $\mathcal{O}(\log N)$ -size group public keys
- $\mathcal{O}(\log^3 N)$ -size membership certificates

Concretely at the 128-bit security level

• Each signature takes 6 kB (for 512-bit element representation)

Thank you!

