HPC in Cryptanalysis
A short tutorial

Antoine Joux

Eurocrypt 2012
April 16th, 2012
Why “HPC in Cryptanalysis”?
Why “HPC in Cryptanalysis”?

- Historical link
Why “HPC in Cryptanalysis”?

- Historical link

- Background activity in support of research
Why “HPC in Cryptanalysis”?

- Historical link

- Background activity in support of research

- Fun (but sometime frustrating)
How special are computations in Cryptanalysis?

Aimed at record breaking / new algorithms benchmarking

No real need for reusability

Have to be performed on whatever is available

Computations are easy to check

Antoine Joux
HPC in Cryptanalysis
How special are computations in Cryptanalysis?

- Aimed at record breaking / new algorithms benchmarking
How special are computations in Cryptanalysis?

- Aimed at record breaking / new algorithms benchmarking
- No real need for reusability
How special are computations in Cryptanalysis?

- Aimed at record breaking / new algorithms benchmarking
- No real need for reusability
- Have to be performed on whatever is available
How special are computations in Cryptanalysis?

- Aimed at record breaking / new algorithms benchmarking
- No real need for reusability
- Have to be performed on whatever is available
- Computations are easy to check
Main steps

1. Algorithmic starting point
2. Validation by toy implementation
3. Find computing power / Choose target computation
4. Program / Debug / Optimize
5. Run and Manage computation
Main steps

- Algorithmic starting point
Main steps

- Algorithmic starting point
 - Validation by toy implementation
Main steps

- Algorithmic starting point
 - Validation by toy implementation

- Find computing power / Choose target computation
Main steps

- Algorithmic starting point
 - Validation by toy implementation

- Find computing power / Choose target computation

- Program / Debug / Optimize
Main steps

- Algorithmic starting point
 - Validation by toy implementation

- Find computing power / Choose target computation

- Program / Debug / Optimize

- Run and Manage computation
Starting points: personal sample
Starting points: personal sample

- Lattice reduction and applications
Starting points: personal sample

- Lattice reduction and applications
- Collisions and multicollisions
Starting points: personal sample

- Lattice reduction and applications
- Collisions and multicollisions
- Elliptic curves, pairings, volcanoes
Starting points: personal sample

- Lattice reduction and applications
- Collisions and multicollisions
- Elliptic curves, pairings, volcanoes
- Index Calculus
Starting points: personal sample

- Lattice reduction and applications
- Collisions and multicollisions
- Elliptic curves, pairings, volcanoes
- Index Calculus
- Decomposition algorithms (Knapsacks, codes)
Starting points: personal sample

- Lattice reduction and applications
- Collisions and multicollisions
- Elliptic curves, pairings, volcanoes
- Index Calculus
- Decomposition algorithms (Knapsacks, codes)
- Gröbner bases
Stopping at toy implementations
Stopping at toy implementations

- **Pairings**

 - *Comparing the MOV and FR Reductions in E. C. Crypto*
 Harasama, Shikata, Suzuki, Imai
 ⇒ Faster implementation using Miller’s technique

 - Can be used constructively: Tripartite Diffie-Hellman
Stopping at toy implementations

- **Pairings**
 - *Comparing the MOV and FR Reductions in E. C. Crypto*
 - Harasama, Shikata, Suzuki, Imai
 - \Rightarrow Faster implementation using Miller’s technique
 - Can be used constructively: Tripartite Diffie-Hellman

- **Volcanoes**
 - *Pairing the volcano*, Ionica, J.
Finding computing power

Old-fashioned technique: Use/buy dedicated local machines
- Easy to arrange (assuming funding available)
- Good control of the architecture choice
- Control on the availability of the computing resources
- Not easy to scale

Email computations: Use idle cycles on desktop
- Total available power is potentially huge
- No control on choice of architecture or availability
- Very limited communication bandwidth
- Need to deal with "adversary" resources
- Need for a very user-friendly client
Finding computing power

- Old-fashioned technique: Use/buy dedicated local machines
 - Easy to arrange (assuming funding available)
 - Good control of the architecture choice
 - Control on the availability of the computing resources
 - Not easy to scale
Finding computing power

- Old-fashioned technique: Use/buy dedicated local machines
 - Easy to arrange (assuming funding available)
 - Good control of the architecture choice
 - Control on the availability of the computing resources
 - Not easy to scale

- Email computations: Use idle cycles on desktop
 - Total available power is potentially huge
 - No control on choice of architecture or availability
 - Very limited communication bandwidth
 - Need to deal with “adversary” resources
 - Need for a very user-friendly client
Finding computing power

Apply for power on HPC resources

Very high-end dedicated computers

Fast communication

Need to use the existing architecture

Job management in a multi-user context is hard

Challenge: adapt to the massively parallel environment

HPC in the Cloud

Antoine Joux

HPC in Cryptanalysis
Finding computing power

- Apply for power on HPC resources
 - Very high-end dedicated computers
 - Fast communication
 - Need to use the existing architecture
 - Job management in a multi-user context is hard
 - Challenge: adapt to the massively parallel environment
Finding computing power

- Apply for power on HPC resources
 - Very high-end dedicated computers
 - Fast communication
 - Need to use the existing architecture
 - Job management in a multi-user context is hard
 - Challenge: adapt to the massively parallel environment

- HPC in the Cloud
Choosing a target

Quality of target:
- Proof of concept only
- Real size demo
- Attack cryptographic size parameters or record

Reasonable feasibility assurance
Choosing a target

Quality of target:
- Proof of concept only
- Real size demo
- Attack cryptographic size parameters or record
Choosing a target

- Quality of target:
 - Proof of concept only
 - Real size demo
 - Attack cryptographic size parameters or record

- Reasonable feasibility assurance
Proof of concept case
Proof of concept case

- *Differential collisions in SHA-0*, Chabaud, J.
 Full collision out of reach: Demo collisions
 - 80-rounds on partially linearized functions
 - 35-rounds on SHA-0
 - *New generic algorithms for hard knapsacks.* Howgrave-Graham, J.
 - *Improved generic algorithms for hard knapsacks.* Becker, Coron, J.
 - Decoding random binary linear codes in $2^{n/20}$.

Antoine Joux

HPC in Cryptanalysis
Proof of concept case

- Differential collisions in SHA-0, Chabaud, J.
 Full collision out of reach: Demo collisions
 - 80-rounds on partially linearized functions
 - 35-rounds on SHA-0

- New generic algorithms for hard knapsacks.
 Howgrave-Graham, J.
 Improved generic algorithms for hard knapsacks.
 Becker, Coron, J.
Proof of concept case

- Differential collisions in SHA-0, Chabaud, J.
 Full collision out of reach: Demo collisions
 - 80-rounds on partially linearized functions
 - 35-rounds on SHA-0

- New generic algorithms for hard knapsacks.
 Howgrave-Graham, J.
 Improved generic algorithms for hard knapsacks.
 Becker, Coron, J.

- Decoding random binary linear codes in $2^{n/20}$.
 Becker, J., May, Meurer
Medium case
Medium case

- *A practical attack against knapsack based hash functions*
 Granboulan, J. (1994)
 14 h single CPU, 25% success rate
Medium case

- *A practical attack against knapsack based hash functions*
 Granboulan, J. (1994)
 14 h single CPU, 25% success rate

 Full run 125 CPU.years (partially done)
 Reduced memory
Medium case

- *A practical attack against knapsack based hash functions*
 Granboulan, J. (1994)
 14 h single CPU, 25% success rate

- *Cryptanalysis of PKP: A new approach*
 Jaulmes, J. (2001)
 Full run 125 CPU.years (partially done)
 Reduced memory

- *Fast correlation attacks: an algorithmic point of view*
 Chose, J., Mitton (2002)
 Reduced memory, demo on 40 bits LFSR, a few CPU days
Medium case

 14 h single CPU, 25% success rate

 Full run 125 CPU.years (partially done)
 Reduced memory

- *Fast correlation attacks: an algorithmic point of view,*
 Chose, J., Mitton (2002)
 Reduced memory, demo on 40 bits LFSR, a few CPU days

- *Elliptic curve discrete logarithm problem over small degree extension fields* J., Vitse (JoC 2011)
 Adapted version of GB computations
The coding phase for records
(personal view)
The coding phase for records (personal view)

- Keep it simple, stupid
 - Avoid fancy languages, remain at low-level
The coding phase for records (personal view)

- Keep it simple, stupid
 - Avoid fancy languages, remain at low-level
 - Avoid Libraries
The coding phase for records (personal view)

- Keep it simple, stupid
 - Avoid fancy languages, remain at low-level
 - Avoid Libraries
 - Avoid creeping featurism

Don't care too much about portability/reusability

Changes/Adaptations should be simple

Optimization

- Don't optimize non-critical parts
- Don't over-optimize

Main rule: avoid nasty surprises

Program from scratch

Conservative and defensive programming
The coding phase for records (personal view)

- Keep it simple, stupid
 - Avoid fancy languages, remain at low-level
 - Avoid Libraries
 - Avoid creeping featurism
 - Don’t care too much about portability/reusability

Changes/Adaptations should be simple

Optimization
- Don’t optimize non-critical parts
- Don’t over-optimize
- Main rule: avoid nasty surprises

Program from scratch

Conservative and defensive programming
The coding phase for records
(personal view)

- Keep it simple, stupid
 - Avoid fancy languages, remain at low-level
 - Avoid Libraries
 - Avoid creeping featurism
 - Don’t care too much about portability/reusability
 - Changes/Adaptations should be simple
The coding phase for records (personal view)

- Keep it simple, stupid
 - Avoid fancy languages, remain at low-level
 - Avoid Libraries
 - Avoid creeping featurism
 - Don’t care too much about portability/reusability
 - Changes/Adaptations should be simple

- Optimization
 - Don’t optimize non-critical parts
 - Don’t over-optimize
The coding phase for records (personal view)

- Keep it simple, stupid
 - Avoid fancy languages, remain at low-level
 - Avoid Libraries
 - Avoid creeping featurism
 - Don’t care too much about portability/reusability
 - Changes/Adaptations should be simple

- Optimization
 - Don’t optimize non-critical parts
 - Don’t over-optimize

- Main rule: avoid nasty surprises
 - Program from scratch
 - Conservative and defensive programming
Running the computation

Tedious and difficult step
Scale up slowly to the intended size
Expect problems, software can fail
Easy phases don't scale well: Need to reprogram them on the fly
Rare bugs can be hard to detect: Check intermediate data
Expect problems, hardware can fail
Power down risk: Need ability to restart computation
Availability problems: Avoid tight schedule
Hardware faults can damage computations
Check intermediate data
Running the computation

- Tedious and difficult step
Running the computation

- Tedious and difficult step
- Scale up slowly to the intended size
Running the computation

- Tedious and difficult step
- Scale up slowly to the intended size
- Expect problems, software can fail
 - Easy phases don’t scale well: Need to reprogram them on the fly
 - Rare bugs can be hard to detect: Check intermediate data
Running the computation

- Tedious and difficult step
- Scale up slowly to the intended size
- Expect problems, software can fail
 - Easy phases don’t scale well: Need to reprogram them on the fly
 - Rare bugs can be hard to detect: Check intermediate data
- Expect problems, hardware can fail
 - Power down risk: Need ability to restart computation
 - Availability problems: Avoid tight schedule
 - Hardware faults can damage computations
 Check intermediate data
Size of computations — Some reference points

- DLOG GF(p) 160-digits (Kleinjung 2007): 3.5 + 14 CPU.years
- RSA-768 (Kleinjung et al. 2009): 1500 + 155 CPU.years
- RSA-200 (Bahr, Boem, Franken Kleinjung 2005): 55 + 20 CPU.years
- ECC-2K130 (Bernstein et al.): ≈ 16 000 CPU.years
- 10 trillion digits of π (Yee, Kondo 2011): 12 cores, 90 days: 3 CPU.years
- Largest project in last PRACE call (climate simulation): 16 500 CPU.years
Example 1: EC Point counting (1998)

Starting point Lercier PhD (1997)

Classical computation with 2 phases

Phase 1: Compute modular partial information
Phase 2: Paste together using collisions search

Modular data available

Classical match-and-sort required about 1 month

⇒ Power shutdown after 3 weeks!

⇒ Back to the drawing board:

"Chinese & Match", an alternative to Atkin's "Match and Sort" method used in the SEA algorithm, Lercier, J. (1999)

Main gain: Reduced memory cost
Example 1: EC Point counting (1998)

- Starting point Lercier PhD (1997)
Example 1: EC Point counting (1998)

- Starting point Lercier PhD (1997)
- Classical computation with 2 phases
 - Phase 1: Compute modular partial information
 - Phase 2: Paste together using collisions search
Example 1: EC Point counting (1998)

- Starting point Lercier PhD (1997)
- Classical computation with 2 phases
 - Phase 1: Compute modular partial information
 - Phase 2: Paste together using collisions search
- Modular data available

Classical match-and-sort required about 1 month
⇒ Power shutdown after 3 weeks!
Back to the drawing board:
⇒ "Chinese & Match", 4 CPUs during a single night
"Chinese & Match", an alternative to Atkin’s "Match and Sort" method used in the SEA algorithm
Main gain: Reduced memory cost
Example 1: EC Point counting (1998)

- Starting point Lercier PhD (1997)
- Classical computation with 2 phases
 - Phase 1: Compute modular partial information
 - Phase 2: Paste together using collisions search
- Modular data available
- Classical match-and-sort required about 1 month
 ⇒ Power shutdown after 3 weeks!
Example 1: EC Point counting (1998)

- Starting point Lercier PhD (1997)
- Classical computation with 2 phases
 - Phase 1: Compute modular partial information
 - Phase 2: Paste together using collisions search
- Modular data available
- Classical match-and-sort required about 1 month
 ⇒ Power shutdown after 3 weeks!
- Back to the drawing board:
 ⇒ Chinese and Match, 4 CPUs during a single night
Example 1: EC Point counting (1998)

- Starting point Lercier PhD (1997)
- Classical computation with 2 phases
 - Phase 1: Compute modular partial information
 - Phase 2: Paste together using collisions search
- Modular data available
- Classical match-and-sort required about 1 month
 ⇒ Power shutdown after 3 weeks!
- Back to the drawing board:
 ⇒ Chinese and Match, 4 CPUs during a single night
- “Chinese & Match”, an alternative to Atkin’s “Match and Sort” method used in the SEA algorithm, Lercier, J. (1999)
Example 1: EC Point counting (1998)

- Starting point Lercier PhD (1997)
- Classical computation with 2 phases
 - Phase 1: Compute modular partial information
 - Phase 2: Paste together using collisions search
- Modular data available
- Classical match-and-sort required about 1 month
 ⇒ Power shutdown after 3 weeks!
- Back to the drawing board:
 ⇒ Chinese and Match, 4 CPUs during a single night
- “Chinese & Match”, an alternative to Atkin’s “Match and Sort” method used in the SEA algorithm, Lercier, J. (1999)
- Main gain: Reduced memory cost

Improved version of SHA-0 analysis

4 blocks collision

⇒ Four consecutive “brute force” steps

Collision found in 80,000 CPU-hours

About 9 CPU.years (Three weeks real time on 160 CPUs)

Published in Collisions of SHA-0 and Reduced SHA-1, Biham, Chen, J., Carribault, Lemuet, Jalby (2005)

- Improved version of SHA-0 analysis

- Improved version of SHA-0 analysis
- 4 blocks collision
 \[\Rightarrow\] Four consecutive “brute force” steps

- Improved version of SHA-0 analysis
- 4 blocks collision
 ⇒ Four consecutive “brute force” steps
- Collision found in 80 000 CPU.hours
 About 9 CPU.years (Three weeks real time on 160 CPUs)

- Improved version of SHA-0 analysis
- 4 blocks collision
 \[\Rightarrow\] Four consecutive “brute force” steps
- Collision found in 80 000 CPU.hours
 About 9 CPU.years (Three weeks real time on 160 CPUs)
- Published in *Collisions of SHA-0 and Reduced SHA-1*, Biham, Chen, J., Carribault, Lemuet, Jalby (2005)
Example 3: Triple collisions (2009)

- Improved generic algorithms for 3-collisions, Lucks, J. Asiacrypt 2009

Simple computation with 3 phases

1. Compute iterations $F_i(R)$ from random R ⇒ Stop at distinguished point
2. Sort by end point values
3. Restart from triples with same end points and recompute

Needs raw computing power, low communication/disk ⇒ Phase 1 on CUDA graphics card (≈ 8 times faster than the CPUs on the available machines) Phase 2, easy step, on single CPU Phase 3, less costly than Phase 1, harder to code Done on CPUs

Triple collision on 64-bits cryptographic function

Magnitude of computation : 100 CPU.days
Example 3: Triple collisions (2009)

- *Improved generic algorithms for 3-collisions*, Lucks, J. Asiacrypt 2009
- Simple computation with 3 phases
 - Phase 1: Compute iterations $F^i(R)$ from random R
 ⇒ Stop at distinguished point
 - Phase 2: Sort by end point values
 - Phase 3: Restart from triples with same end points and recompute

Needs raw computing power, low communication/disk
⇒ Phase 1 on CUDA graphics card (≈ 8 times faster than CPUs on the available machines)
Phase 2, easy step, on single CPU
Phase 3, less costly than Phase 1, harder to code
Done on CPUs

Triple collision on 64-bits cryptographic function
Magnitude of computation: 100 CPU.days
Example 3: Triple collisions (2009)

- *Improved generic algorithms for 3-collisions*, Lucks, J. Asiacrypt 2009
- Simple computation with 3 phases
 - Phase 1: Compute iterations $F^i(R)$ from random R ⇒ Stop at distinguished point
 - Phase 2: Sort by end point values
 - Phase 3: Restart from triples with same end points and recompute
- Needs raw computing power, low communication/disk ⇒ Phase 1 on CUDA graphics card (≈ 8 times faster than the CPUs on the available machines)
Example 3: Triple collisions (2009)

- *Improved generic algorithms for 3-collisions*, Lucks, J. Asiacrypt 2009
- Simple computation with 3 phases
 - Phase 1: Compute iterations $F^i(R)$ from random R
 - Stop at distinguished point
 - Phase 2: Sort by end point values
 - Phase 3: Restart from triples with same end points and recompute
- Needs raw computing power, low communication/disk
 - Phase 1 on CUDA graphics card (\approx 8 times faster than the CPUs on the available machines)
- Phase 2, easy step, on single CPU

Antoine Joux
HPC in Cryptanalysis
Example 3: Triple collisions (2009)

- *Improved generic algorithms for 3-collisions*, Lucks, J.
Asiacrypt 2009

- Simple computation with 3 phases
 - Phase 1: Compute iterations $F^i(R)$ from random R
 \Rightarrow Stop at distinguished point
 - Phase 2: Sort by end point values
 - Phase 3: Restart from triples with same end points and recompute

- Needs raw computing power, low communication/disk
 \Rightarrow Phase 1 on CUDA graphics card (\approx 8 times faster than the CPUs on the available machines)

- Phase 2, easy step, on single CPU
- Phase 3, less costly than Phase 1, harder to code
Done on CPUs
Example 3: Triple collisions (2009)

- *Improved generic algorithms for 3-collisions*, Lucks, J. Asiacrypt 2009

Simple computation with 3 phases
- Phase 1: Compute iterations $F^i(R)$ from random R
 - Stop at distinguished point
- Phase 2: Sort by end point values
- Phase 3: Restart from triples with same end points and recompute

Needs raw computing power, low communication/disk
- Phase 1 on CUDA graphics card (≈ 8 times faster than the CPUs on the available machines)
- Phase 2, easy step, on single CPU
- Phase 3, less costly than Phase 1, harder to code
 Done on CPUs

Triple collision on 64-bits cryptographic function
Magnitude of computation: 100 CPU.days
Example 4: Index calculus

A known landscape:

- Discrete log. in $\mathbb{GF}(p^n)$: 6553725, 120 digits (2005), 37080130, 168 digits (2005)

When e-th roots become easier than Factoring, J., Naccache, Thomé 2007

Oracle assisted static DH, J., Lercier, Naccache, Thomé 2008

Oracle assisted static DH on Oakley curve (Granger, J., Vitse 2010)

Not a routine task!
Example 4: Index calculus

A known landscape:
- Discrete log. in GF(p^n): 65537^{25}, 120 digits (2005), 370801^{30}, 168 digits (2005)
- *When e-th roots become easier than Factoring*, J., Naccache, Thomé 2007
- Oracle assisted static DH, J., Lercier, Naccache, Thomé 2008
- Oracle assisted static DH on Oakley curve (Granger, J., Vitse 2010)
Example 4: Index calculus

- A known landscape:
 - Discrete log. in GF\(\left(2^n\right)\): 521 bits (2001), 607 bits (Thomé 2002, 2005), 613 bits (2005)
 - Discrete log. in GF\(\left(p^n\right)\): \(65537^{25}\), 120 digits (2005), \(370801^{30}\), 168 digits (2005)
 - *When e-th roots become easier than Factoring*, J., Naccache, Thomé 2007
 - Oracle assisted static DH, J., Lercier, Naccache, Thomé 2008
 - Oracle assisted static DH on Oakley curve (Granger, J., Vitse 2010)

- Not a routine task!
Index calculus in finite fields

<table>
<thead>
<tr>
<th></th>
<th>GF(p)</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU.days</td>
<td>150</td>
<td>260</td>
<td>70</td>
<td>280</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Computers</td>
<td>$4 \times 1 + 1$</td>
<td>$8 \times 1 + 1$</td>
<td>1×4</td>
<td>1×4</td>
<td>1×16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>GF(2^n)</th>
<th>521</th>
<th>607</th>
<th>613</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU.days</td>
<td>120</td>
<td>560</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>Computers</td>
<td>1×4</td>
<td>1×16</td>
<td>4×16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Other</th>
<th>65537^{25}</th>
<th>370801^{30}</th>
<th>RSA-155 e-th roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU.days</td>
<td>2</td>
<td>0.5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Computers</td>
<td>1</td>
<td>$1 \times 16 + 1 \times 8$</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Initial view for EC-DLOG on GF(p^6)
Initial view for EC-DLOG on GF(p^6)

- **Theory:**
 - Phase 1: Sieving
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

- **Practice:**
 - Phase 1:
 - 1a: Sieving
 - 1b: Verification of relations (fast)
 - Phase 2:
 - 2a: Structured Gaussian Elimination (fast)
 - 2b: Lanczos algorithm
 - 2c: Completing the logarithms (fast)
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

View confirmed by 6×22
Initial view for EC-DLOG on GF(p^6)

- Theory:
 - Phase 1: Sieving
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

- Practice:
 - Phase 1:
 - 1a: Sieving
 - 1b: Verification of relations (fast)

 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

View confirmed by 6×22
Initial view for EC-DLOG on $\text{GF}(p^6)$

- **Theory:**
 - Phase 1: Sieving
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

- **Practice:**
 - Phase 1:
 - 1a: Sieving
 - 1b: Verification of relations (fast)
 - Phase 2:
 - 2a: Structured Gaussian Elimination (fast)
 - 2b: Lanczos algorithm
 - 2c: Completing the logarithms (fast)
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms
Initial view for EC-DLOG on GF(p^6)

- **Theory:**
 - Phase 1: Sieving
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

- **Practice:**
 - Phase 1:
 - 1a: Sieving
 - 1b: Verification of relations (fast)
 - Phase 2:
 - 2a: Structured Gaussian Elimination (fast)
 - 2b: Lanczos algorithm
 - 2c: Completing the logarithms (fast)
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

- View confirmed by 6×22
More data for 6×22

Computation performed on GENCI’s Titane computer (Project t2010066445)
More data for 6×22

Computation performed on GENCI’s Titane computer (Project t2010066445)

- Sieving: About 1 hour on 200 CPUs
More data for 6×22

Computation performed on GENCI’s Titane computer (Project t2010066445)

- Sieving: About 1 hour on 200 CPUs
- SGE: from 50 M eq. in 2.1 M var.
 \Rightarrow 666 K eq./var.
More data for 6×22

Computation performed on GENCI’s Titane computer
(Project t2010066445)

- Sieving: About 1 hour on 200 CPUs
- SGE: from 50 M eq. in 2.1 M var.
 \[\Rightarrow 666 \text{ K eq./var.} \]
- Lanczos 27 hours on 128 CPUs
More data for 6×22

Computation performed on GENCI’s Titane computer (Project t2010066445)

- Sieving: About 1 hour on 200 CPUs
- SGE: from 50 M eq. in 2.1 M var. \Rightarrow 666 K eq./var.
- Lanczos 27 hours on 128 CPUs
- Completion, 10 min single CPU
More data for 6×22

Computation performed on GENCI’s Titane computer (Project t2010066445)

- Sieving: About 1 hour on 200 CPUs
- SGE: from 50 M eq. in 2.1 M var. \[\Rightarrow 666 \text{ K eq./var.} \]
- Lanczos 27 hours on 128 CPUs
- Completion, 10 min single CPU
- Individual logarithms, a few min, single CPU

Total 152 CPU.days
More data for 6×22

Computation performed on GENCI’s Titane computer
(Project t2010066445)
- Sieving: About 1 hour on 200 CPUs
- SGE: from 50 M eq. in 2.1 M var. ⇒ 666 K eq./var.
- Lanczos 27 hours on 128 CPUs
- Completion, 10 min single CPU
- Individual logarithms, a few min, single CPU

Total 152 CPU.days
Going to 6 × 23 and 6 × 24
Going to 6×23 and 6×24

- 2a: Structured Gaussian Elimination
 - 6×24: Not enough memory. Need to work on disk
 - 6×25: Too slow. Need to multi-thread
 - Corruption of equations on disk:
 \[\Rightarrow \text{Add a verification of relations} \]
Going to 6×23 and 6×24

- **2a: Structured Gaussian Elimination**
 - 6×24: Not enough memory. Need to work on disk
 - 6×25: Too slow. Need to multi-thread
 - Corruption of equations on disk:
 \Rightarrow Add a verification of relations

- **2b: Lanczos: Getting slow**
 - Time limit on jobs: need to save/restart
 - Need to supervise the process
More data for 6×23

Computation performed on GENCI's Curie \(^1\)
(PRACE Projects 2010PA0421 and 2011RA0387)

\(^1\)Same computer used for all subsequent computations
More data for 6×23

Computation performed on GENCI’s Curie1
(PRACE Projects 2010PA0421 and 2011RA0387)

- Sieving: About 3.5 hour on 1024 CPUs

1Same computer used for all subsequent computations
More data for 6×23

Computation performed on GENCI’s Curie \(^1\) (PRACE Projects 2010PA0421 and 2011RA0387)

- **Sieving**: About 3.5 hour on 1024 CPUs
- **SGE**: Not enough memory
 \[\Rightarrow\] Rewrite to work on disk. Becomes too slow: need to multi-thread

\[^1\] Same computer used for all subsequent computations
More data for 6×23

Computation performed on GENCI’s Curie 1
(PRACE Projects 2010PA0421 and 2011RA0387)

- Sieving: About 3.5 hour on 1024 CPUs
- SGE: Not enough memory
 \Rightarrow Rewrite to work on disk. Becomes too slow: need to multi-thread
- New SGE: from 870 Meq. in 4.2 M var.
 \Rightarrow 1 M. eq./var. Using a few hours on 32 CPUs.

1Same computer used for all subsequent computations
More data for 6×23

Computation performed on GENCI’s Curie \(^1\)
(PRACE Projects 2010PA0421 and 2011RA0387)

- Sieving: About 3.5 hour on 1024 CPUs
- SGE: Not enough memory
 ⇒ Rewrite to work on disk. Becomes too slow: need to multi-thread
- New SGE: from 870 Meq. in 4.2 M var.
 ⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
- Corruption of some equations on disk:
 ⇒ Add a verification of relations

\(^1\)Same computer used for all subsequent computations
More data for 6×23

Computation performed on GENCi’s Curie \(^1\) (PRACE Projects 2010PA0421 and 2011RA0387)

- Sieving: About 3.5 hour on 1024 CPUs
- SGE: Not enough memory
 ⇒ Rewrite to work on disk. Becomes too slow: need to multi-thread
- New SGE: from 870 Meq. in 4.2 M var.
 ⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
- Corruption of some equations on disk:
 ⇒ Add a verification of relations
- Lanczos 73 hours on 64 CPUs

\(^1\)Same computer used for all subsequent computations
More data for 6×23

Computation performed on GENCI’s Curie\(^1\) (PRACE Projects 2010PA0421 and 2011RA0387)

- Sieving: About 3.5 hour on 1024 CPUs
- SGE: Not enough memory
 \rightarrow Rewrite to work on disk. Becomes too slow: need to multi-thread
- New SGE: from 870 Meq. in 4.2 M var.
 \rightarrow 1 M. eq./var. Using a few hours on 32 CPUs.
- Corruption of some equations on disk:
 \rightarrow Add a verification of relations
- Lanczos 73 hours on 64 CPUs
- Completion, 17.5 hours single CPU

\(^1\)Same computer used for all subsequent computations
More data for 6×23

Computation performed on GENCI’s Curie ¹
(PRACE Projects 2010PA0421 and 2011RA0387)

- Sieving: About 3.5 hour on 1024 CPUs
- SGE: Not enough memory
 ⇒ Rewrite to work on disk. Becomes too slow: need to multi-thread
- New SGE: from 870 Meq. in 4.2 M var.
 ⇒ 1 M. eq./var. Using a few hours on 32 CPUs.
- Corruption of some equations on disk:
 ⇒ Add a verification of relations
- Lanczos 73 hours on 64 CPUs
- Completion, 17.5 hours single CPU
- Individual logarithms, a few min, single CPU

¹Same computer used for all subsequent computations
More data for 6×23

Computation performed on GENCI’s Curie\(^1\) (PRACE Projects 2010PA0421 and 2011RA0387)

- Sieving: About 3.5 hour on 1024 CPUs
- SGE: Not enough memory
 \Rightarrow Rewrite to work on disk. Becomes too slow: need to multi-thread
- New SGE: from 870 Meq. in 4.2 M var.
 \Rightarrow 1 M. eq./var. Using a few hours on 32 CPUs.
- Corruption of some equations on disk:
 \Rightarrow Add a verification of relations
- Lanczos 73 hours on 64 CPUs
- Completion, 17.5 hours single CPU
- Individual logarithms, a few min, single CPU

Total 350 CPU.days

\(^{1}\)Same computer used for all subsequent computations
More data for 6×24
More data for 6×24

- Sieving: About 15 hours on 1024 CPUs
More data for 6×24

- Sieving: About 15 hours on 1024 CPUs
- New SGE: from 3.5 Geq. in 8.4 M var. ⇒ 1.7 M. eq./var. Using a few hours on 32 CPUs.
More data for 6×24

- **Sieving:** About 15 hours on 1024 CPUs
- **New SGE:** from 3.5 Geq. in 8.4 M var.
 \Rightarrow 1.7 M. eq./var. Using a few hours on 32 CPUs.
- **Corruption of some equations on disk:**
 \Rightarrow Add a verification of relations
More data for 6×24

- **Sieving:** About 15 hours on 1024 CPUs
- **New SGE:** from 3.5 Geq. in 8.4 M var. \[\Rightarrow 1.7 \text{ M. eq./var. Using a few hours on 32 CPUs.}\]
- **Corruption of some equations on disk:** \[\Rightarrow \text{Add a verification of relations}\]
- **Lanczos 11 days on 64 CPUs**
More data for 6×24

- Sieving: About 15 hours on 1024 CPUs
- New SGE: from 3.5 Geq. in 8.4 M var.
 \Rightarrow 1.7 M. eq./var. Using a few hours on 32 CPUs.
- Corruption of some equations on disk:
 \Rightarrow Add a verification of relations
- Lanczos 11 days on 64 CPUs
- Completion, 13 hours single CPU
More data for 6×24

- Sieving: About 15 hours on 1024 CPUs
- New SGE: from 3.5 Geq. in 8.4 M var.
 \Rightarrow 1.7 M. eq./var. Using a few hours on 32 CPUs.
- Corruption of some equations on disk:
 \Rightarrow Add a verification of relations
- Lanczos 11 days on 64 CPUs
- Completion, 13 hours single CPU
- Individual logarithms, a few min, single CPU

Total 1350 CPU.days
\[\approx 3.7 \text{ CPU.years} \]
More data for 6×24

- Sieving: About 15 hours on 1024 CPUs
- New SGE: from 3.5 Geq. in 8.4 M var.
 \Rightarrow 1.7 M. eq./var. Using a few hours on 32 CPUs.
- Corruption of some equations on disk:
 \Rightarrow Add a verification of relations
- Lanczos 11 days on 64 CPUs
- Completion, 13 hours single CPU
- Individual logarithms, a few min, single CPU

- Total 1350 CPU.days \approx 3.7 CPU.years
Going to 6×25

- Lanczos: Getting slow
- Time limit on jobs: need to automate save/restart
- Need to supervise the process
- Completion of logarithms
- Related to SGE: Becoming harder
- Occasional corruption of logarithms on disk!

\Rightarrow Add a correction step to remove false logs
Going to 6×25

- Lanczos: Getting slow
 - Time limit on jobs: need to automate save/restart
 - Need to supervise the process
Going to 6×25

- **Lanczos:** Getting slow
 - Time limit on jobs: need to automate save/restart
 - Need to supervise the process

- **Completion of logarithms**
 - Related to SGE: Becoming harder
 - Occasional corruption of logarithms on disk!
 ⇒ Add a correction step to remove false logs
More data for 6×25
More data for 6×25

- Sieving: About 62 hours on 1024 CPUs
More data for 6×25

- Sieving: About 62 hours on 1024 CPUs
- New SGE: from 14 Geq. in 16.8 M var. ⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on 32 CPUs.
More data for 6×25

- **Sieving**: About 62 hours on 1024 CPUs
- **New SGE**: from 14 Geq. in 16.8 M var.
 \Rightarrow 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on 32 CPUs.
- **Lanczos**: 28.5 days on 64 CPUs
More data for 6×25

- **Sieving**: About 62 hours on 1024 CPUs
- **New SGE**: from 14 Geq. in 16.8 M var.
 \Rightarrow 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on 32 CPUs.
- **Lanczos**: 28.5 days on 64 CPUs
- **Completion becoming too slow**: multi-threaded version
 \Rightarrow 12 hours on 32 CPUs
More data for 6×25

- Sieving: About 62 hours on 1024 CPUs
- New SGE: from 14 Geq. in 16.8 M var. ⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on 32 CPUs.
- Lanczos 28.5 days on 64 CPUs
- Completion becoming too slow: multi-threaded version ⇒ 12 hours on 32 CPUs
- Individual logarithms, improved code: 1 min, single CPU

Total 4470 CPU.days ≈ 12 CPU.years
More data for 6×25

- Sieving: About 62 hours on 1024 CPUs
- New SGE: from 14 Geq. in 16.8 M var. ⇒ 3.1 M. eq. Using a few runs on 32 CPUs. Total 25.5h on 32 CPUs.
- Lanczos 28.5 days on 64 CPUs
- Completion becoming too slow: multi-threaded version ⇒ 12 hours on 32 CPUs
- Individual logarithms, improved code: 1 min, single CPU

- Total 4470 CPU.days \approx 12 CPU.years
EC-DLOG on GF(p^6): toward 6×26

Theory:
- Phase 1: Sieving
- Phase 2: Linear algebra
- Phase 3: Individual logarithms

Practice:
- Phase 1:
 - 1a: Sieving
 - 1b: Verification of relations (fast)
- Phase 2:
 - 2a: Structured Gaussian Elimination
 - 2b: Verification of relations
 - 2c: Lanczos algorithm (About 4 months expected)
 - 2d: Completing/Correcting the logarithms
- Phase 3: Individual logarithms (fast)

New view confirmed by 6×25

Antoine Joux
HPC in Cryptanalysis
EC-DLOG on GF(p^6): toward 6×26

- **Theory:**
 - Phase 1: Sieving
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

- **Practice:**
 - Phase 1:
 - 1a: Sieving
 - 1b: Verification of relations (fast)
 - Phase 2:
 - 2a: Structured Gaussian Elimination
 - 2b: Verification of relations
 - 2c: Lanczos algorithm (About 4 months expected)
 - 2d: Completing/Correcting the logarithms
 - Phase 3: Individual logarithms (fast)

New view confirmed by 6×25
EC-DLOG on GF(p^6): toward 6×26

- **Theory:**
 - Phase 1: Sieving
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

- **Practice:**
 - Phase 1:
 - 1a: Sieving
 - 1b: Verification of relations (fast)
EC-DLOG on GF(p^6): toward 6×26

- **Theory:**
 - Phase 1: Sieving
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

- **Practice:**
 - Phase 1:
 - 1a: Sieving
 - 1b: Verification of relations (fast)
 - Phase 2:
 - 2a: Structured Gaussian Elimination
 - 2b: Verification of relations
 - 2c: Lanczos algorithm (About 4 months expected)
 - 2d: Completing/Correcting the logarithms
EC-DLOG on GF(p^6): toward 6×26

- **Theory:**
 - Phase 1: Sieving
 - Phase 2: Linear algebra
 - Phase 3: Individual logarithms

- **Practice:**
 - Phase 1:
 - 1a: Sieving
 - 1b: Verification of relations (fast)
 - Phase 2:
 - 2a: Structured Gaussian Elimination
 - 2b: Verification of relations
 - 2c: Lanczos algorithm (About 4 months expected)
 - 2d: Completing/Correcting the logarithms
 - Phase 3: Individual logarithms (fast)

- New view confirmed by 6×25
Toward 6×26

- Sieving and verification OK
 - 8192 CPUs for 24 hours
- SGE OK: From 40 Geq in 33.5 M var
 - \Rightarrow 5.9 M eq. A few 10h runs on 32 CPUs
- Lanczos expected to 4 months on 64 CPUs:

 - Started on Sept. 22
 - Slower than expected in real time
 - Machine busy, need to wait between runs
 - End expected on Feb. 4th

Orthogonalization did not stop!

Failure: how to proceed?

- Option 1: Add a sanity check and restart
- Option 2: Improve Lanczos for more CPUs
- Option 3: Back to the drawing board
Toward 6×26

- Sieving and verification OK
 - 8192 CPUs for 24 hours
- SGE OK: From 40 Geq in 33.5 M var
 \[\Rightarrow 5.9 \text{ M eq. A few 10h runs on 32 CPUs} \]
- Lanczos expected to 4 months on 64 CPUs:
 - Started on Sept. 22$^{\text{nb}}$.

Antoine Joux

HPC in Cryptanalysis
Toward 6×26

- Sieving and verification OK
 - 8192 CPUs for 24 hours
- SGE OK: From 40 Geq in 33.5 M var
 - \Rightarrow 5.9 M eq. A few 10h runs on 32 CPUs
- Lanczos expected to 4 months on 64 CPUs:
 - Started on Sept. 22nb.
 - Slower than expected in real time
 - Machine busy, need to wait between runs

Orthogonalization did not stop!

Failure: how to proceed?

Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board
Toward 6×26

- Sieving and verification OK
 - 8192 CPUs for 24 hours
- SGE OK: From 40 Geq in 33.5 M var
 - \Rightarrow 5.9 M eq. A few 10h runs on 32 CPUs
- Lanczos expected to 4 months on 64 CPUs:
 - Started on Sept. 22$^{\text{nb}}$.
 - Slower than expected in real time
 - Machine busy, need to wait between runs
 - End expected on Feb. 4$^{\text{th}}$

Orthogonalization did not stop!

Failure: how to proceed?

Option 1: Add a sanity check and restart
Option 2: Improve Lanczos for more CPUs
Option 3: Back to the drawing board
Toward 6×26

- Sieving and verification OK
 - 8192 CPUs for 24 hours
- SGE OK: From 40 Geq in 33.5 M var
 - $\Rightarrow 5.9$ M eq. A few 10h runs on 32 CPUs
- Lanczos expected to 4 months on 64 CPUs:
 - Started on Sept. 22$^{\text{nb}}$.
 - Slower than expected in real time
 - Machine busy, need to wait between runs
 - End expected on Feb. 4$^{\text{th}}$
 - Orthogonalization did not stop!

Option 1: Add a sanity check and restart

Option 2: Improve Lanczos for more CPUs

Option 3: Back to the drawing board
Toward 6×26

- Sieving and verification OK

 8192 CPUs for 24 hours

- SGE OK: From 40 Geq in 33.5 M var

 \Rightarrow 5.9 M eq. A few 10h runs on 32 CPUs

- Lanczos expected to 4 months on 64 CPUs:

 - Started on Sept. 22$^{\text{nd}}$.
 - Slower than expected in real time
 Machine busy, need to wait between runs
 - End expected on Feb. 4$^{\text{th}}$
 - Orthogonalization did not stop!

- Failure: how to proceed?
Toward 6×26

- Sieving and verification OK
 - 8192 CPUs for 24 hours

- SGE OK: From 40 Geq in 33.5 M var
 \Rightarrow 5.9 M eq. A few 10h runs on 32 CPUs

- Lanczos expected to 4 months on 64 CPUs:
 - Started on Sept. 22nb.
 - Slower than expected in real time
 - Machine busy, need to wait between runs
 - End expected on Feb. 4th
 - Orthogonalization did not stop!

- Failure: how to proceed?
 - Option 1: Add a sanity check and restart
Toward 6×26

- Sieving and verification OK
 - 8192 CPUs for 24 hours
- SGE OK: From 40 Geq in 33.5 M var
 ⇒ 5.9 M eq. A few 10h runs on 32 CPUs
- Lanczos expected to 4 months on 64 CPUs:
 - Started on Sept. 22nb.
 - Slower than expected in real time
 - Machine busy, need to wait between runs
 - End expected on Feb. 4th
 - Orthogonalization did not stop!

- Failure: how to proceed?
 - Option 1: Add a sanity check and restart
 - Option 2: Improve Lanczos for more CPUs
Toward 6×26

- Sieving and verification OK
 - 8192 CPUs for 24 hours

- SGE OK: From 40 Geq in 33.5 M var
 \Rightarrow 5.9 M eq. A few 10h runs on 32 CPUs

- Lanczos expected to 4 months on 64 CPUs:
 - Started on Sept. 22nb.
 - Slower than expected in real time
 - Machine busy, need to wait between runs
 - End expected on Feb. 4th
 - Orthogonalization did not stop!

- Failure: how to proceed?
 - Option 1: Add a sanity check and restart
 - Option 2: Improve Lanczos for more CPUs
 - Option 3: Back to the drawing board
Back to the drawing board

Solution known: Block Wiedemann (Coppersmith) Used by Thomé for GF(2^{603}). 480 K eqs. Need 4 weeks on 6 quadri-CPUs computers. Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs 8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

Three Phases:
Several iterated matrix multiplications in parallel
Find linear relation in sequence:
Subquadratic computation of vector generating polynomials and improvement of the block Wiedemann algorithm, Thomé (2001/2002)

Need to scale up the approach
Back to the drawing board

- Solution known: Block Wiedemann (Coppersmith)
Back to the drawing board

- Solution known: Block Wiedemann (Coppersmith)
- Used by Thomé for \(\text{GF}(2^{603}) \). 480 K eqs.
 Need 4 weeks on 6 quadri-CPU computers.
Back to the drawing board

- Solution known: Block Wiedemann (Coppersmith)
 - Used by Thomé for GF(2^{603}). 480 K eqs.
 Need 4 weeks on 6 quadri-CPU computers.
 - Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
 8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)
Back to the drawing board

- Solution known: Block Wiedemann (Coppersmith)
 - Used by Thomé for GF(2^{603}). 480 K eqs.
 Need 4 weeks on 6 quadri-CPU computers.
 - Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
 8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

- Three Phases:
Back to the drawing board

- Solution known: Block Wiedemann (Coppersmith)
 - Used by Thomé for GF(2^{603}). 480 K eqs.
 Need 4 weeks on 6 quadri-CPU computers.
 - Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
 8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

- Three Phases:
 - Several iterated matrix multiplications in parallel
Back to the drawing board

- Solution known: Block Wiedemann (Coppersmith)
 - Used by Thomé for GF(2^{603}). 480 K eqs.
 Need 4 weeks on 6 quadri-CPU computers.
 - Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
 8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

- Three Phases:
 - Several iterated matrix multiplications in parallel
 - Find linear relation in sequence:
 Subquadratic computation of vector generating polynomials
 and improvement of the block Wiedemann algorithm,
 Thomé (2001/2002)
Back to the drawing board

- Solution known: Block Wiedemann (Coppersmith)
 - Used by Thomé for $\text{GF}(2^{603})$. 480 K eqs.
 Need 4 weeks on 6 quadri-CPU computers.
 - Used by Kleinjung for $\text{GF}(p)$, 160-digits, 2.2 Meqs
 8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

- Three Phases:
 - Several iterated matrix multiplications in parallel
 - Find linear relation in sequence:
 Subquadratic computation of vector generating polynomials and improvement of the block Wiedemann algorithm,
 - Recompute iterated matrix multiplications in parallel to obtain solution
Back to the drawing board

- Solution known: Block Wiedemann (Coppersmith)
 - Used by Thomé for GF(2^{603}). 480 K eqs.
 Need 4 weeks on 6 quadri-CPUs computers.
 - Used by Kleinjung for GF(p), 160-digits, 2.2 Meqs
 8 jobs (12-24 CPUs) each, 14 CPU.years (at least 4 weeks)

- Three Phases:
 - Several iterated matrix multiplications in parallel
 - Find linear relation in sequence:
 Subquadratic computation of vector generating polynomials and improvement of the block Wiedemann algorithm, Thomé (2001/2002)
 - Recompute iterated matrix multiplications in parallel to obtain solution

- Need to scale up the approach
New Linear Algebra, testing on 6×25

- Lanczos on 64 cores
- Lanczos Total CPU time $\approx 43,800$ hours
- Lanczos Real time (without waits) ≈ 28.5 days
New Linear Algebra, testing on 6×25

- Lanczos on 64 cores
- Lanczos Total CPU time $\approx 43,800$ hours
- Lanczos Real time (without waits) ≈ 28.5 days

First Matrix Vector Phase: $\approx 33h30$ on 1024 cores
- 32 independent sequences

- Thomé's algorithm: $\approx 9h30$ on 32 cores

Second Matrix Vector Phase: $\approx 15h30$ on 1024 cores
- Total CPU time $\approx 50,500$ hours, 2100 CPU.days
- Real time (without waits) ≈ 2.5 days
- New total real time including Sieving: ≈ 5 days ≈ 14 CPU.years
New Linear Algebra, testing on 6×25

- Lanczos on 64 cores
- Lanczos Total CPU time ≈ 43800 hours
- Lanczos Real time (without waits) ≈ 28.5 days

- First Matrix Vector Phase: $\approx 33h30$ on 1024 cores
 32 independent sequences
- Thomé’s algorithm: $\approx 9h30$ on 32 cores
New Linear Algebra, testing on 6×25

- Lanczos on 64 cores
- Lanczos Total CPU time $\approx 43,800$ hours
- Lanczos Real time (without waits) ≈ 28.5 days

- First Matrix Vector Phase: $\approx 33h30$ on 1024 cores
 32 independent sequences
- Thomé’s algorithm: $\approx 9h30$ on 32 cores
- Second Matrix Vector Phase: $\approx 15h30$ on 1024 cores
New Linear Algebra, testing on 6×25

- Lanczos on 64 cores
- Lanczos Total CPU time $\approx 43,800$ hours
- Lanczos Real time (without waits) ≈ 28.5 days

- First Matrix Vector Phase: $\approx 33h30$ on 1024 cores
 - 32 independent sequences
- Thomé’s algorithm: $\approx 9h30$ on 32 cores
- Second Matrix Vector Phase: $\approx 15h30$ on 1024 cores
- Total CPU time $\approx 50,500$ hours, 2100 CPU.days
- Real time (without waits) ≈ 2.5 days
New Linear Algebra, testing on 6×25

- Lanczos on 64 cores
- Lanczos Total CPU time $\approx 43,800$ hours
- Lanczos Real time (without waits) ≈ 28.5 days

- First Matrix Vector Phase: $\approx 33h30$ on 1024 cores
 - 32 independent sequences
- Thomé’s algorithm: $\approx 9h30$ on 32 cores
- Second Matrix Vector Phase: $\approx 15h30$ on 1024 cores
- Total CPU time $\approx 50,500$ hours, 2100 CPU.days
- Real time (without waits) ≈ 2.5 days
- New total real time including Sieving: ≈ 5 days
 ≈ 14 CPU.years
New linear algebra 6×26 ?

First Matrix Vector Phase: ≈ 125 h on 1024 cores

32 independent sequences

Started March 28th

Due to an electrical problem, CURIE is unavailable since the 3rd April 2012 at 8:30pm.

General power cut on high voltage line is solved. The TGCC center is operational and CURIE is now available. (April 4th, 17:30)

Still running . . . (Curie very busy these days)

Antoine Joux

HPC in Cryptanalysis
New linear algebra 6×26?

- First Matrix Vector Phase: ≈ 125 h on 1024 cores
 32 independent sequences
New linear algebra 6×26 ?

- First Matrix Vector Phase: $\approx 125 \text{ h on 1024 cores}$
 32 independent sequences
- Started March 28th
New linear algebra 6×26?

- First Matrix Vector Phase: ≈ 125 h on 1024 cores
 32 independent sequences
- Started March 28th

Due to an electrical problem, CURIE is unavailable since the 3rd April 2012 at 8:30pm.

Still running... (Curie very busy these days)
New linear algebra 6×26?

- First Matrix Vector Phase: ≈ 125 h on 1024 cores
 32 independent sequences
- Started March 28th

 Due to an electrical problem, CURIE is unavailable since the 3th april 2012 at 8:30pm.

 General power cut on high voltage line is solved. The TGCC center is operational and CURIE is now available. (April 4th, 17:30)
New linear algebra 6×26?

- First Matrix Vector Phase: ≈ 125 h on 1024 cores
 32 independent sequences
- Started March 28th

 Due to an electrical problem, CURIE is unavailable since the 3th April 2012 at 8:30pm.

 General power cut on high voltage line is solved. The TGCC center is operational and CURIE is now available. (April 4th, 17:30)

- Still running . . . (Curie very busy these days)
Conclusion

Questions ?