FULLY HOMOMORPHIC ENCRYPTION WITH POLYLOG OVERHEAD

Craig Gentry and Shai Halevi
IBM Watson

Nigel Smart
Univ. Of Bristol

Homomorphic Encryption

- Usual procedures (KeyGen, Enc, Dec)
 - Say, encrypting bits
- Usual semantic-security requirement
 - (pk, $\operatorname{Enc}_{pk}(0)$) ~ (pk, $\operatorname{Enc}_{pk}(1)$)
- Additional Eval procedure
 - Evaluate arithmetic circuits on ciphertexts
 - Result decrypted to the evaluation of the same circuit on the underlying plaintext bits
 - Ciphertext does not grow with circuit complexity
- This work: asymptotically efficient Eval

Contemporary HE Schemes

- The [Gentry'09] approach
 - Ciphertext is noisy (to get security)
 - Noise grow with homomorphic evaluation
 - Until ciphertext is too noisy to decrypt
- Ciphertext is inherently large
 - Need to leave lots of room for noise to grow
 - It takes $\widetilde{\Omega}(\lambda)$ -bit ciphertext to encrypt a single bit
 - λ is the security parameter
- Implementing each binary arithmetic gate takes at least $\widetilde{\Omega}(\lambda)$ time
 - $\widetilde{\Omega}(\lambda)$ time just to read the input ciphertexts

Our Result

- Homomorphic evaluation of T-gate binary arithmetic circuits of average width $\widetilde{\Omega}(\lambda)$ in time **T-polylog(\lambda)**
- More Generally, a T-gate, W-average-width circuit can be evaluated homomorphically in time $\widetilde{O}([W/\lambda] \cdot \lambda \cdot T/W)$

time per level # of levels

Our Approach

- Use HE over polynomial rings
- Pack an array of bits in each ciphertext
- Use ring-automorphisms to move bits around in the arrays
- Efficient data-movement schemes
 - Using Beneš/Waksman networks and extensions

BACKGROUND

- Homomorphic Encryption over Polynomials Rings
- Polynomial-CRT representation, plaintext slots
- Homomorphic SIMD operations

Hom.Enc. Over Polynomial Rings

- Used, e.g., in [BGV'12], [LTV'12], [B'12]
- Native plaintext space is $R_2 = Z_2[X]/\Phi_m(X)$
 - Binary polynomials modulo $\Phi_m(X)$ (m odd)
 - $\Phi_m(X)$ is m'th cyclotomic polynomial, $\deg=\phi(m)$
- $\Phi_m(X)$ irreducible over Z, but not mod 2
 - $\Phi_m(X) = \prod_{j=1}^{\ell} F_j(X) \pmod{2}$
 - F_j 's are irreducible, all have the same degree d
 - degree d is the order of 2 in Z_m^*
 - For some m's we can get $\ell = \frac{\phi(m)}{d} = \Omega(\frac{m}{\log m})$

Plaintext Slots

- Plaintext element $a \in R_2$ encodes ℓ values
 - $a \cong [\alpha_1, ..., \alpha_\ell], \ \alpha_j = (a \bmod F_j)$
 - Polynomial Chinese Remainders
- Can use a's for which each α_i is a bit
- Ops +,× work independently on the slots
 - ℓ -ADD: $a + a' \cong [\alpha_1 + \alpha'_1, \dots, \alpha_\ell + \alpha'_\ell]$
 - ℓ -MUL: $a \times a' \cong [\alpha_1 \times \alpha_1', ..., \alpha_\ell \times \alpha_\ell']$

Homomorphic SIMD [SV'11]

- SIMD = Single Instruction Multiple Data
- Computing the same function on ℓ inputs at the price of one computation
- Pack the inputs into the slots
 - Bit-slice, inputs to j'th instance go in j'th slots
- Compute the function once
- After decryption, decode the ℓ output bits from the output plaintext polynomial

Aside: an ℓ-SELECT Operation

We will use this later

COMPUTING ON DATA ARRAYS

Forget about encryption for the moment...

So you want to compute some function...

ADD and MUL are a *complete* set of operations.

So you want to compute some function using SIMD...

 ℓ -ADD and ℓ -MUL are <u>not</u> a complete set of operations!!! ... unless, of course, we use ℓ =1... \otimes

Routing Values Between Levels

We need to map this

\mathbf{x}_1	\mathbf{x}_2	x ₃	\mathbf{x}_4	x ₅	0	x ₇
x ₁₅	x ₁₆	x ₁₇	x ₁₈	x ₁₉	1	x ₂₁

Into that ... so we can use ℓ-add

ℓ-ADD, ℓ-MUL, ℓ-PERMUTE: a complete set of SIMD ops

ℓ-ADD, ℓ-MUL, ℓ-PERMUTE: a complete set of SIMD ops

ℓ-ADD

ℓ-ADD, ℓ-MUL, ℓ-PERMUTE: a complete set of SIMD ops

Use ℓ-PERMUTE for routing between circuit levels

Not quite obvious

Routing Values Between Levels: Three Problems to Solve

- How to implement ℓ-permute?
 - $a \in R_2$ encodes ℓ -array using polynomial-CRT
 - We are given an encryption of a
- 2. Fan-out: need to **clone** values from high fan-out gates before routing to next level
- Big permutation: For a width-W level, we need a permutation over 2W values
 - Implemented using ℓ-permute on ℓ-arrays
 - Even when $W \gg \ell$

Implementing ℓ-Permute

- Recall: native plaintext is binary polynomial modulo $\Phi_m(X)$, $a \in R_2 = Z_2[X]/\Phi_m(X)$
 - $a \cong [\alpha_1, ..., \alpha_\ell], \ \alpha_j = (a \bmod F_j)$
 - $a + a' \cong [\alpha_1 + \alpha'_1, \dots, \alpha_\ell + \alpha'_\ell]$
 - $a \times a' \cong [\alpha_1 \times \alpha'_1, ..., \alpha_\ell \times \alpha'_\ell]$
- Is there a natural operation on polynomials that moves values between slots?

Moving Values Between Slots

- [BGV12] use automorphisms $a(X) \rightarrow a(X^{j})$
 - Similar technique in [LPR'10]
- Very roughly, yields cyclic shifts
 - E.g., if $a(X) \cong [\alpha_1, \alpha_2, ..., \alpha_{\ell}]$ then $a(X^5) \cong [\alpha_{\ell}, \alpha_1, ..., \alpha_{\ell-1}]$
 - Can be used to shift by any amount
- Can be implemented homomorphically
- This gives us shifts
 - But we want arbitrary permutations, efficiently

From Shifts to Arbitrary Permutations

Use Beneš/Walksman Permutation Networks:

- Two back-to-back butterflies
 - Every exchange is controlled by a bit
 - Values sent on either straight edges
 or cross edges

 Every permutation can be realized by appropriate setting of the control bits

- Claim: every butterfly level can be realized by two shifts and two SELECTs
- Example:

Control bits: 1 0 1 1

Claim: every level of the Benes network can be realized by two shifts and two SELECTs

Proof: In every level, all the exchanges are between nodes at the same distance

Distance 2ⁱ for some i

Can implement all these exchanges using shift(2'), shift(-2'), and two SELECTs

- Every level takes 2 shifts and 2 SELECTs
- There are 2log(ℓ) levels
- \Rightarrow Any permutation on ℓ -arrays can be realized using $4\log(\ell)$ shifts and $4\log(\ell)$ SELECTs
- Some more complications when ℓ is not a power of two
 - But still only O(log ℓ) operations

Routing Values Between Levels

- ✓ Implementing ℓ-permute
 - Using $X \mapsto X^j$ to get simple shifts
 - Benes network to get arbitrary permutation
 - Takes O(log ℓ) operations
- Cloning values from high fan-out gates
- Permutations over $W \gg \ell$ elements
- Both can be done in O(log W) operations
- → Intra-level routing takes $O(\frac{W}{\ell}log(W))$ ops

not

today

For a width-W level

Low Overhead Homomorphic Encryption

- Pack inputs into ℓ-arrays
 - ℓ can made as large as $\widetilde{\Omega}(\lambda)$
- SIMD operations to implement each level
- Route values to their place for next level
- Each level takes $\widetilde{O}([W/\lambda] \cdot \lambda)$ work
- Total work for size-T width-W circuit is $\widetilde{O}([W/\lambda] \cdot \lambda \cdot T/W)$

QUESTIONS?

Handling Large Permutations

- Can we arbitrarily permute $m \times \ell$ items, given in m arrays of size ℓ , using ℓ -ADD, ℓ -MUL, ℓ -PERMUTE?
- Theorem (Lev, Pippenger, Valiant '84): A permutation π over m× ℓ addresses (viewed as a rectangle) can be decomposed as $\pi = \pi_3^\circ \pi_2^\circ \pi_1$, where:
 - π_1 only permutes within the columns
 - π_2 only permutes within the rows
 - π_3 only permutes within the columns
- Within rows: Use ℓ-PERMUTE on each row (array).
- Within columns: swap elements with same index using ℓ-SELECT.

13	18	14	16	12
15	3	4	5	6
7	8	9	20	19
2	17	1	11	10

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

13	18	14	16	12
15	3	4	5	6
7	8	9	20	19
2	17	1	11	10

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

13	17	14	5	6
15	3	4	16	12
7	8	9	11	10
2	18	1	20	19

13	18	14	16	12
15	3	4	5	6
7	8	9	20	19
2	17	1	11	10

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

13	17	14	5	6
15	3	4	16	12
7	8	9	11	10
2	18	1	20	19

6	17	13	14	5
16	12	3	4	15
11	7	8	9	10
1	2	18	19	20

13	18	14	16	12
15	3	4	5	6
7	8	9	20	19
2	17	1	11	10

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

13	17	14	5	6
15	3	4	16	12
7	8	9	11	10
2	18	1	20	19

6	17	13	14	5
16	12	3	4	15
11	7	8	9	10
1	2	18	19	20

13	18	14	16	12
15	3	4	5	6
7	8	9	20	19
2	17	1	11	10

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

13	17	14	5	6
15	3	4	16	12
7	8	9	11	10
2	18	1	20	19

6	17	13	14	5
16	12	3	4	15
11	7	8	9	10
1	2	18	19	20

13	10			
15	3	4	5	6
7	8	9	20	19
	17	1	11	

1	2			
Ó	7	8	9	10
1	12	13	14	15
	17	18	19	2

13	17	14	5
15	3	4	1/-
7	8	9	(_
2	18	1	20
_	10		20

17	13	14	5
12	3	4	15
	8	9	10
2	18	19	20

Sort by intended multiplicity:

2	2	2	2	2	1	1
X ₁₀	X ₁₃	X ₁₅	X ₁₉	X ₂₁	X_3	X_4

1	1	1	1	1	1	1
X_7	X ₈	X ₁₂	X ₁₄	X ₁₆	X ₁₈	X ₂₀

Replicate

Replicate and shift

2	2	2	2	2	1	1
X ₁₀	X ₁₃	X ₁₅	X ₁₉	X ₂₁	X_3	X_4

1	1	1	1	1	1	1
X_7	X ₈	X ₁₂	X ₁₄	X ₁₆	X ₁₈	X ₂₀

Merge

Replicate, shift, merge

Replicate, shift

1	1	1	1	1	1	1
X_7	X ₈	X ₁₂	X ₁₄	X ₁₆	X ₁₈	X ₂₀

2	2			
X ₂₁	X ₂₁			

Merge

Each variable appears at least as much as needed