FULLY HOMOMORPHIC
ENCRYPTION WITH
POLYLOG OVERHEAD

Craig Gentry and Shai Halevi
IBM Watson

Nigel Smart
Univ. Of Bristol

Homomorphic Encryption

- Usual procedures (KeyGen,Enc,Dec)
- Say, encrypting bits

- Usual semantic-security requirement
- (PK, Ency, (0)) ~ (pK, ENncp (1))

- Additional Eval procedure

- Evaluate arithmetic circuits on ciphertexts

- Result decrypted to the evaluation of the same
circuit on the underlying plaintext bits

- Ciphertext does not grow with circuit complexity
- This work: asymptotically efficient Eval

Contemporary HE Schemes

- The [Gentry’09] approach
- Ciphertext is noisy (to get security)
- Noise grow with homomorphic evaluation
- Until ciphertext is too noisy to decrypt

- Ciphertext Is inherently large
- Need to leave lots of room for noise to grow

- It takes Q(1)-bit ciphertext to encrypt a single bit
« A Is the security parameter

- Implementing each binary arithmetic gate takes
at least (1) time

- (1) time just to read the input ciphertexts

L
Our Result

- Homomorphic evaluation of T-gate binary
arithmetic circuits of average width Q(1) in
time T-polylog(A)

- More Generally, a T-gate, W-average-width
circuit can be evaluated homomorphically
in time 5(\[W//1] A-T/W)

! !
time per level # of levels

L
Our Approach

- Use HE over polynomial rings
- Pack an array of bits in each ciphertext

- Use ring-automorphisms to move bits
around In the arrays

- Efficient data-movement schemes
- Using Benes/Waksman networks and extensions

BACKGROUND

- Homomorphic Encryption ove
- Polynomial-CRT represe
- Homomorphic SIMD

Hom.Enc. Over Polynomial Rings

-Used, e.g., iIn [BGV'12], [LTV'12], [B'12]
- Native plaintext space is R, = Z,[X]/®,,,(X)
- Binary polynomials modulo ®,,,(X) (m odd)
d.. (X) is m’th cyclotomic polynomial, deg=¢(m)
@, (X) Irreducible over Z, but not mod 2
@, (X) = [1521F;(X) (mod 2)

- F's are irreducible, all have the same degree d
- degree d is the order of 2in Z,,

$(m)
- For some m’'s we can get £ = = Q(log —

)

Plaintext Slots

- Plaintext element a € R, encodes ¢ values
ca = |ay, ..., a;], aj = (amod F))
- Polynomial Chinese Remainders

-Can use a’s for which each «; is a bit

- Ops +,x work independently on the slots
-¢-ADD: a +a' = [a; + ay, ..., ap + ay]
-¢-MUL: a X a’" = [ay X ay, ..., ap X ay]

IR

IR

L
Homomorphic SIMD [SV'11]

SIMD = Single Instruction Multiple Data

- Computing the same function on £ inputs at
the price of one computation

- Pack the inputs into the slots
- Bit-slice, inputs to j'th instance go in j'th slots
- Compute the function once

- After decryption, decode the ¢ output bits
from the output plaintext polynomial

L
Aside: an £-SELECT Operation

e lx] x| | x

= o O e e
10 0 1 0 1 0 +

T g [e | (e = [e T g [

- We will use this later

COMPUTING ON D

So you want to compute some function...

ADD and MUL are a complete set of operations.

So you want to compute some function
using SIMD...

0 1 1 Input
Xl X2 X3 X4 X5 X7 X8X9 X10X11X12 X14X15X16X17 X18 X19 X21X22 X23X24X25X26 blts

£-ADD and ¢-MUL are not a complete set of operations!!!
... unless, of course, we use ¥=1... ®

L
Routing Values Between Levels

-We need to map this

-Into that ... so we can use f-add

HHEGOLH S4ODND.

¢£-ADD, £-MUL, Y-PERMUTE:

€-PERMUTE(7:)<
£-MULT

a complete set of SIMD ops

X, Xy, X3 X, X5 0

W

¢£-ADD, £-MUL, Y-PERMUTE:

a complete set of SIMD ops

W

X1 X, X3 Xy XO

£-ADD

¢£-ADD, ¢-MUL, ¥-PERMUTE:
a complete set of SIMD ops

Xy Xy X3 Xy X5 0 X7 XgXg X0X11Xyp 1 XXX 6X19X1gX19 1 X, X,,X,3%0, X0 %, INPUL

bits

* Not quite obvious

L
Routing Values Between Levels:

Three Problems to Solve

1. How to implement #-permute?
- a € R, encodes f-array using polynomial-CRT
- We are given an encryption of a

2. Fan-out: need to clone values from high
fan-out gates before routing to next level

3. Big permutation: For a width-W level,
we need a permutation over 2W values

- Implemented using ¢-permute on f-arrays
-Evenwhen W > ¢

Implementing £-Permute

- Recall: native plaintext is binary polynomial
modulo ®,,,(X), a € R, = Z,[X]/P,,,(X)
ca = |ay, ..., a;], aj = (amod F))
ca+a =lay+ag, .., ap + ay
caxa =[a; Xag,.,ap X ay]

-Is there a natural operation on polynomials
that moves values between slots?

Moving Values Between Slots

- [BGV12] use automorphisms a(X)—=>a(X))
- Similar technique in [LPR'10]
- Very roughly, yields cyclic shifts

¢ Eg, |f a(X) = [C(l, az, sen) ag]
then a(X®) = [ay, ay, ..., ap_1]

- Can be used to shift by any amount
- Can be implemented homomorphically

- This gives us shifts
- But we want arbitrary permutations, efficiently

From Shifts to Arbitrary Permutations

Use Benes/Walksman Permutation Networks:
- Two back-to-back butterflies

-3 -2 -1 0 1 2 3

- Every exchange. —. .« -

: . 2ot o ‘ 27X B P I,
Is controlled by a bit ;, . _2<2 A\\VIA\VI',.. =4
> NN IIAVW e

011 @

- Values sent on either . -
straight edges =1

e o 110

or cross edges *-° 7

- Every permutation can be realized by
appropriate setting of the control bits

Realizing Permutation Networks

- Claim: every butterfly level can be realized
by two shifts and two SELECTs

- Example:

QNN OO ONON 0RO

@Q@O@@@@

Control bits:

Realizing Permutation Networks

I input

| shift(-2)

shift(2)

2 1 0 3 6 7 1 5 | output

Realizing Permutation Networks

7 input
1 shift(-2)

shift(2)

0 1 SELECT(a,,a,)

% [T TS serectiaay

output

L
Realizing Permutation Networks

Claim: every level of the Benes network can
be realized by two shifts and two SELECTs

Proof : In every level, all the exchanges are
between nodes at the same distance

- Distance 2' for some i

Can implement all these exchanges using
shift(2", shift(-2"), and two SELECTs M

Realizing Permutation Networks

- Every level takes 2 shifts and 2 SELECTs
- There are 2log(?) levels

—Any permutation on £-arrays can be
realized using 4log(#) shifts and 4log(¥)
SELECTs

- Some more complications when £ Is not a
power of two

- But still only O(log ¥) operations

Routing Values Between Levels

v Implementing ¢-permute
Using X ~ X’ to get simple shifts
Benes network to get arbitrary permutation
Takes O(log #) operations

- Cloning values from high fan-out gates }not
- Permutations over W > ¢ elements odey
- Both can be done in O(log W) operations

= Intra-level routing takes O(%Iog(W)) ops
- For a width-W level

L
Low Overhead Homomorphic Encryption

- Pack inputs into ¢-arrays
- £ can made as large as Q(1)

- SIMD operations to implement each level
- Route values to their place for next level
- Each level takes O([W /4] - 1) work

- Total work for size-T width-W circuit Is
O([W/2]-A-T/W)

QUESTIONS?

Handling Large Permutations

- Can we arbitrarily permute mx#£ items, given in m
arrays of size ¢, using ¢-ADD, ¢-MUL, ¢Y-PERMUTE?

- Theorem (Lev, Pippenger, Valiant ‘84): A permutation
nm over mx£ addresses (viewed as a rectangle) can be
decomposed as n = ngz° m,° 1y, Where:

- 1, only permutes within the columns
- 1, only permutes within the rows
- 13 only permutes within the columns

- Within rows: Use #-PERMUTE on each row (array).

- Within columns: swap elements with same index
using ¢-SELECT.

Decomposing Permutations

ElEEEE ENEEE
53 4 506 2 % |7 a8 10
7 8 9 20 10 WP U 12 13 1 15
2 1 1 om0 16 17 18 19 20

Decomposing Permutations

13 18 14 16 12| 12 3 4 5

153 4 5 6 2 6 7 8 9 10
78 9 20 19 WP W 12 18 14 15
2 17 1 W 10 16 17 18 19 (20

13 17 14 5 |6
15 3 4 |16 [i28
7 8 9 1 [10
2 18 1 20 19

Decomposing Permutations

2
20 i [[o - 16 17 18 19 20

13 17 14 5 6 6 1/ 13 14 5
16 12 3

Decomposing Permutations

1 11 12 2 s 4 B
BB s8] 2 © 7 s 5 [0
2 13 14 15
1 o1 18 20

17 13 14 5
12 3 (4 Y
s 9 1o
2 18 19 20

Decomposing Permutations

ElEEEE ENEEE
53 4 506 2 % |7 a8 10
7 8 9 20 10 WP U 12 13 1 15
2 1 1 om0 16 17 18 19 20

-

Fan-Out and C|Oning inteIded multiplicity
Ky Ky Ky Ky Xs Xg Xy K Ko Kao Ko K KuXa Kus Ko Kay Kug Koo Koo Xy

|

variables

Fan-Out and Cloning

Xy Xp Xy Xy Xs Ko Xy Ko Ko XooXu KKK Kis Ko Xy Koo Ky Ko Xor

Sort by intended multiplicity:

XuXp Koy Xs Ko Xs KKy Ko XuKaXs Ko Ko Ky Xip Koy Ko Koo Xan

Fan-Out and Cloning

Replicate

DA

Replicate and shift

BBl

Fan-Out and Cloning

Ky Ko¥) Ko Ko Xy Ko XoKOKLKK KX X XKu X XXX
Merge

CENERNENER I

Fan-Out and Cloning

XuXp XXy Xs Ko Xg Xio Ky Koo Koy X Xy Xy

Replicate, shift, merge

Xy Ko X1y Koy K Koo Xan

2 [Pl

Replicate, shift

HEEEEEE
L]

Fan-Out and Cloning

BEENNEE SN
Ko Koy Koo Koo Ko Ko Ky Ky Ko g Koy Koo Koo Ko

CENENZNCNENCE
Xu Xp Xy X X5 X X

[NENENCNENENCE
X Xp Xy X Xp Xy Xy

[ENENNENENCE
X Xp Xy X Xp Xy Xy

ezl | |||
Xs X Xo XuXuXisXs Ka¥Xa

Merge

2 plpl2l2

Fan-Out and Cloning

BEENNEE SN
Ko Koy Koo Koo Ko Ko Ky Ky Ko g Koy Koo Koo Ko

CENENZNCNENCE
Xu Xp Xy X X5 X X

[NENENCNENENCE
X Xp Xy X Xp Xy Xy

[ENENNENENCE
X Xp Xy X Xp Xy Xy

Copy, merge

lplpplz2 e il | ||
Xs X Xo XuXpXisKs KaXaX X

Copy
EENZNCHENZCE SN N

Each variable appears at least as much as needed

