Public Key Compression

Approximate-GCD

Conclusion O

Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers

Jean-Sébastien Coron, David Naccache and Mehdi Tibouchi

University of Luxembourg & ENS & NTT

EUROCRYPT, 2012-04-18

Public Key Compression

Approximate-GCD 000000 Conclusion O

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

$$egin{aligned} &c_1 = {m_1}^e \mod N \ &c_2 = {m_2}^e \mod N \end{aligned} \Rightarrow &c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \end{aligned}$$

• Additively homomorphic: Paillier

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

Public Key Compression

Approximate-GCD 000000 Conclusion O

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

$$egin{aligned} &c_1 = {m_1}^e \mod N \ &c_2 = {m_2}^e \mod N \end{aligned} \Rightarrow &c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \end{aligned}$$

• Additively homomorphic: Paillier

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

Public Key Compression

Approximate-GCD 000000 Conclusion O

Fully homomorphic encryption

• Multiplicatively homomorphic: RSA.

$$egin{aligned} &c_1 = {m_1}^e \mod N \ &c_2 = {m_2}^e \mod N \end{aligned} \Rightarrow &c_1 \cdot c_2 = (m_1 \cdot m_2)^e \mod N \end{aligned}$$

• Additively homomorphic: Paillier

$$c_1 = g^{m_1} \mod N^2$$

$$c_2 = g^{m_2} \mod N^2 \implies c_1 \cdot c_2 = g^{m_1 + m_2} [N] \mod N^2$$

- Fully homomorphic: homomorphic for both addition and multiplication
 - Open problem until Gentry's breakthrough in 2009.

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
- 3. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping [BGV11]
 - Batch FHE (next talk !)
 - Implementation with homomorphic evaluation of AES [GHS12]
- This talk: smaller PK for DGHV (10 MB) and improved attack against DGHV.

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
- 3. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping [BGV11]
 - Batch FHE (next talk !)
 - Implementation with homomorphic evaluation of AES [GHS12]
- This talk: smaller PK for DGHV (10 MB) and improved attack against DGHV.

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
- 3. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping [BGV11]
 - Batch FHE (next talk !)
 - Implementation with homomorphic evaluation of AES [GHS12]
- This talk: smaller PK for DGHV (10 MB) and improved attack against DGHV.

- 1. Breakthrough scheme of Gentry [G09], based on ideal lattices. Some optimizations by [SV10].
 - Implementation [GH11]: PK size: 2.3 GB, recrypt: 30 min.
- 2. van Dijk, Gentry, Halevi and Vaikuntanathan's scheme over the integers [DGHV10].
 - Implementation [CMNT11]: PK size: 1 GB, recrypt: 15 min.
- 3. RLWE schemes [BV11a,BV11b].
 - FHE without bootstrapping [BGV11]
 - Batch FHE (next talk !)
 - Implementation with homomorphic evaluation of AES [GHS12]
- This talk: smaller PK for DGHV (10 MB) and improved attack against DGHV.

Public Key Compression

Approximate-GCD 000000 Conclusion O

The DGHV Scheme

• Ciphertext for $m \in \{0, 1\}$:

$$c=q\cdot p+2r+m$$

where p is the secret-key, q and r are randoms.

• Decryption:

 $(c \mod p) \mod 2 = m$

• Parameters:

Public Key Compression

Approximate-GCD 000000 Conclusion O

The DGHV Scheme

• Ciphertext for $m \in \{0, 1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

• Decryption:

 $(c \mod p) \mod 2 = m$

• Parameters:

Public Key Compression

Approximate-GCD 000000

Conclusion O

The DGHV Scheme

• Ciphertext for $m \in \{0, 1\}$:

$$c = q \cdot p + 2r + m$$

where p is the secret-key, q and r are randoms.

• Decryption:

 $(c \mod p) \mod 2 = m$

• Parameters:

$$c = \boxed{ \left\| \right\|_{r \in \rho^{\infty} \ge 71}}$$

Public Key Compression

Approximate-GCD 000000 Conclusion O

Homomorphic Properties of DGHV

Addition:

$$c_1 = q_1 \cdot p + 2r_1 + m_1 \ c_2 = q_2 \cdot p + 2r_2 + m_2 \ \Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2$$

Multiplication:

 $c_1 = q_1 \cdot p + 2r_1 + m_1$ $c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2$

with

$$r'' = 2r_1r_2 + r_1m_2 + r_2m_1$$

• Noise becomes twice larger.

Conclusion O

Homomorphic Properties of DGHV

• Addition:

$$c_1 = q_1 \cdot p + 2r_1 + m_1 \ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 + c_2 = q' \cdot p + 2r' + m_1 + m_2$$

• Multiplication:

$$c_1 = q_1 \cdot p + 2r_1 + m_1 \\ c_2 = q_2 \cdot p + 2r_2 + m_2 \Rightarrow c_1 \cdot c_2 = q'' \cdot p + 2r'' + m_1 \cdot m_2$$

with

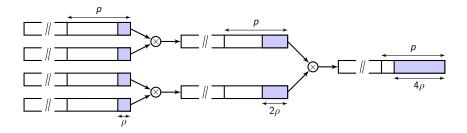
$$r'' = 2r_1r_2 + r_1m_2 + r_2m_1$$

• Noise becomes twice larger.

Conclusion O

Somewhat homomorphic scheme

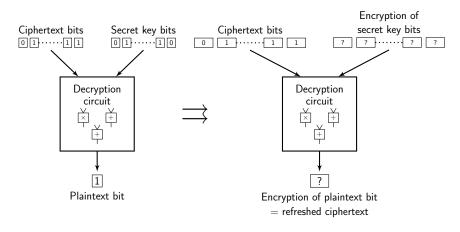
- The number of multiplications is limited.
 - Noise grows with the number of multiplications.
 - Noise must remain < p for correct decryption.



Conclusion O

Fully Homomorphic Encryption

• Gentry's breakthrough idea: refresh the ciphertext by evaluating the decryption circuit homomorphically: bootstrapping.



Approximate-GCD 000000 Conclusion O

Public-key Encryption with DGHV

• Ciphertext

$c = q \cdot p + 2r + m$

• Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

• Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

Approximate-GCD 000000 Conclusion O

Public-key Encryption with DGHV

• Ciphertext

$$c = q \cdot p + 2r + m$$

• Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

Approximate-GCD

Conclusion O

Public-key Encryption with DGHV

• Ciphertext

$$c=q\cdot p+2r+m$$

• Public-key: a set of τ encryptions of 0's.

$$x_i = q_i \cdot p + 2r_i$$

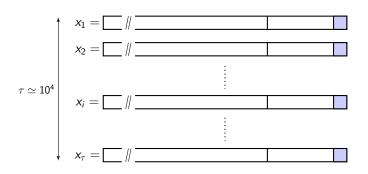
• Public-key encryption:

$$c = m + 2r + \sum_{i=1}^{\tau} \varepsilon_i \cdot x_i$$

for random $\varepsilon_i \in \{0, 1\}$.

Approximate-GCD

Conclusion O



• Public-key size: $\tau \cdot \gamma = 2 \cdot 10^{11}$ bits = 25 GB !

• In [CMNT11], with quadratic encryption, PK size of 1 GB.

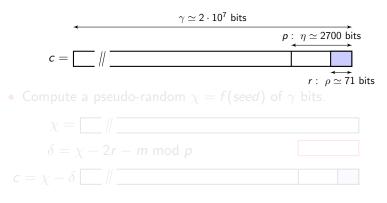
Public Key Compression

Approximate-GCD

Conclusion O

New: DGHV Ciphertext Compression

• Ciphertext:
$$c = q \cdot p + 2r + m$$



Only store seed and the small correction δ.

lpha Storage: $\simeq 2.700$ bits instead of $2 \cdot 10^7$ bits 1

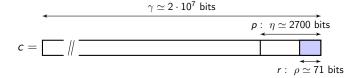
Public Key Compression

Approximate-GCD

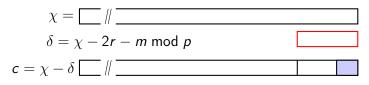
Conclusion O

New: DGHV Ciphertext Compression

• Ciphertext:
$$c = q \cdot p + 2r + m$$



• Compute a pseudo-random $\chi = f(seed)$ of γ bits.



• Only store seed and the small correction δ .

• Storage: $\simeq 2\,700$ bits instead of $2\cdot 10^7$ bits !

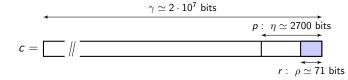
Public Key Compression

Approximate-GCD

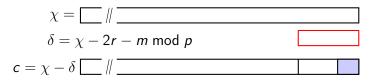
Conclusion O

New: DGHV Ciphertext Compression

• Ciphertext:
$$c = q \cdot p + 2r + m$$



• Compute a pseudo-random $\chi = f(seed)$ of γ bits.



- Only store *seed* and the small correction δ .
- Storage: $\simeq 2700$ bits instead of $2 \cdot 10^7$ bits !

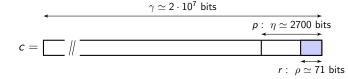
Public Key Compression

Approximate-GCD

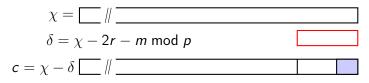
Conclusion O

New: DGHV Ciphertext Compression

• Ciphertext:
$$c = q \cdot p + 2r + m$$



• Compute a pseudo-random $\chi = f(seed)$ of γ bits.

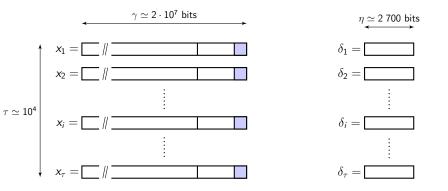


- Only store *seed* and the small correction δ .
- Storage: $\simeq 2700$ bits instead of $2 \cdot 10^7$ bits !

Public Key Compression

Approximate-GCD 000000 Conclusion O

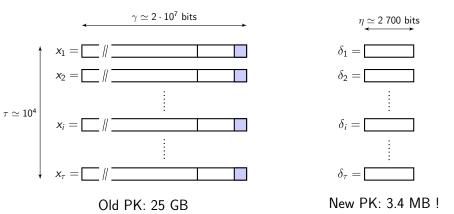
Compressed Public Key



Public Key Compression

Approximate-GCD 000000 Conclusion O

Compressed Public Key



Public Key Compression

Approximate-GCD 000000 Conclusion O

Security of Compressed PK

- Original DGHV scheme is semantically secure, under the approximate-gcd assumption.
 - Approximate-gcd problem: given a set of $x_i = q_i \cdot p + r_i$, recover p.
- Compressed public key
 - seed is part of the public-key, to recover the x_i's, so we cannot argue that f(seed) is pseudo-random.
 - Security in the random oracle model only, still based on approximate-gcd.

Public Key Compression

Approximate-GCD 000000 Conclusion O

Security of Compressed PK

- Original DGHV scheme is semantically secure, under the approximate-gcd assumption.
 - Approximate-gcd problem: given a set of $x_i = q_i \cdot p + r_i$, recover p.
- Compressed public key
 - *seed* is part of the public-key, to recover the x_i 's, so we cannot argue that f(seed) is pseudo-random.
 - Security in the random oracle model only, still based on approximate-gcd.

Conclusion O

Security of Compressed PK

- Original DGHV scheme is semantically secure, under the approximate-gcd assumption.
 - Approximate-gcd problem: given a set of $x_i = q_i \cdot p + r_i$, recover p.
- Compressed public key
 - *seed* is part of the public-key, to recover the x_i's, so we cannot argue that f(seed) is pseudo-random.
 - Security in the random oracle model only, still based on approximate-gcd.

PK Generation

$$\chi_{i} = H(seed, i)$$

$$\delta_{i} = [\chi_{i}]_{p} + \lambda_{i} \cdot p - r_{i}$$

$$\chi_{i} = \chi_{i} - \delta_{i}$$

Conclusion O

Security of Compressed PK

- Original DGHV scheme is semantically secure, under the approximate-gcd assumption.
 - Approximate-gcd problem: given a set of $x_i = q_i \cdot p + r_i$, recover p.
- Compressed public key
 - *seed* is part of the public-key, to recover the x_i 's, so we cannot argue that f(seed) is pseudo-random.
 - Security in the random oracle model only, still based on approximate-gcd.

PK GenerationSimulation in ROM
$$\chi_i = H(seed, i)$$
 $H(seed, i) \leftarrow x_i + \delta_i$ $\delta_i = [\chi_i]_p + \lambda_i \cdot p - r_i$ $\delta_i \leftarrow \{0, 1\}^{\eta + \lambda}$ $x_i = \chi_i - \delta_i$ $x_i = q_i \cdot p + r_i$

Public Key Compression

Approximate-GCD

Conclusion O

PK size and timings

Instance	λ	ρ	η	γ	pk size	Recrypt
Тоу	42	27	1026	$150 \cdot 10^{3}$	77 KB	0.41 s
Small	52	41	1558	$830 \cdot 10^{3}$	437 KB	4.5 s
Medium	62	56	2128	4.2 ·10 ⁶	2.2 MB	51 s
Large	72	71	2698	$19 \cdot 10^{6}$	10.3 MB	11 min

- Updated parameters to take into account the Chen-Nguyen attack.
- PK size: 10.3 MB instead of 1 GB in [CMNT11].

Hardness assumption for semantic security

- Original DGHV scheme: secure under the General Approximate Common Divisor (GACD) assumption.
 - Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Efficient DGHV variant: secure under the Partial Approximate Common Divisor (PACD) assumption.
 - Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- PACD is clearly easier than GACD.
 - How much easier ?

Hardness assumption for semantic security

- Original DGHV scheme: secure under the General Approximate Common Divisor (GACD) assumption.
 - Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Efficient DGHV variant: secure under the Partial Approximate Common Divisor (PACD) assumption.
 - Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- PACD is clearly easier than GACD.
 - How much easier ?

Hardness assumption for semantic security

• Original DGHV scheme: secure under the General Approximate Common Divisor (GACD) assumption.

• Given polynomially many $x_i = p \cdot q_i + r_i$, find p.

- Efficient DGHV variant: secure under the Partial Approximate Common Divisor (PACD) assumption.
 - Given $x_0 = p \cdot q_0$ and polynomially many $x_i = p \cdot q_i + r_i$, find p.
- PACD is clearly easier than GACD.
 - How much easier ?

Public Key Compression

Approximate-GCD 00000 Conclusion O

Solving PACD

- Given x₀ = p ⋅ q₀ and polynomially many x_i = p ⋅ q_i + r_i, find p.
- Brute force attack: 2^ρ GCD computations.
 - with $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ and $0 \le r_1 < 2^{\rho}$.
- Variant suggested by Phong Nguyen, still in $\mathcal{O}(2^{\rho})$:

$$p = \gcd\left(x_0, \prod_{i=0}^{2^p-1} (x_1 - i) \bmod x_0\right)$$

Public Key Compression

Approximate-GCD 00000

Solving PACD

- Given x₀ = p ⋅ q₀ and polynomially many x_i = p ⋅ q_i + r_i, find p.
- Brute force attack: 2^{ρ} GCD computations.
 - with $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ and $0 \le r_1 < 2^{\rho}$.
- Variant suggested by Phong Nguyen, still in $\mathcal{O}(2^{\rho})$:

$$p = \gcd\left(x_0, \prod_{i=0}^{2^p-1} (x_1 - i) \bmod x_0\right)$$

• Improved attack in $\tilde{\mathcal{O}}(2^{\rho/2})$ time and memory by Chen and Nguyen at Eurocrypt 2012.

Public Key Compression

Approximate-GCD

Conclusion O

Solving PACD

- Given x₀ = p ⋅ q₀ and polynomially many x_i = p ⋅ q_i + r_i, find p.
- Brute force attack: 2^{*p*} GCD computations.
 - with $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ and $0 \le r_1 < 2^{\rho}$.
- Variant suggested by Phong Nguyen, still in $\mathcal{O}(2^{\rho})$:

$$p= \gcd\left(x_0, \prod_{i=0}^{2^
ho-1} (x_1-i) mod x_0
ight)$$

• Improved attack in $\tilde{\mathcal{O}}(2^{\rho/2})$ time and memory by Chen and Nguyen at Eurocrypt 2012.

Public Key Compression

Approximate-GCD 00000 Conclusion O

Solving PACD

- Given x₀ = p ⋅ q₀ and polynomially many x_i = p ⋅ q_i + r_i, find p.
- Brute force attack: 2^{*p*} GCD computations.
 - with $x_0 = q_0 \cdot p$ and $x_1 = q_1 \cdot p + r_1$ and $0 \le r_1 < 2^{\rho}$.
- Variant suggested by Phong Nguyen, still in $\mathcal{O}(2^{\rho})$:

$$p= \gcd\left(x_0, \prod_{i=0}^{2^
ho-1} (x_1-i) mod x_0
ight)$$

• Improved attack in $\tilde{\mathcal{O}}(2^{\rho/2})$ time and memory by Chen and Nguyen at Eurocrypt 2012.

Public Key Compression

Approximate-GCD

Conclusion O

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
 - Variant without $x_0 = q_0 \cdot p$.
- Brute force attack: 2^{2p} GCD computations.
 - From $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$
- Using Chen-Nguyen attack: $ilde{\mathcal{O}}(2^{3
 ho/2})$ time.
 - Guess r₁ and apply Chen-Nguyen on r₂
 - $\mathcal{O}(2^{\rho}) \cdot \tilde{\mathcal{O}}(2^{\rho/2}) = \tilde{\mathcal{O}}(2^{3\rho/2})$ time and $\tilde{\mathcal{O}}(2^{\rho/2})$ memory.
- New attack: $\tilde{\mathcal{O}}(2^{\rho})$ time and memory.

Public Key Compression

Approximate-GCD

Conclusion O

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
 - Variant without $x_0 = q_0 \cdot p$.
- Brute force attack: 2² GCD computations.
 - From $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$
- Using Chen-Nguyen attack: Õ(2^{3ρ/2}) time.
 - Guess r₁ and apply Chen-Nguyen on r₂
 - $\mathcal{O}(2^{\rho}) \cdot \tilde{\mathcal{O}}(2^{\rho/2}) = \tilde{\mathcal{O}}(2^{3\rho/2})$ time and $\tilde{\mathcal{O}}(2^{\rho/2})$ memory.
- New attack: $\tilde{\mathcal{O}}(2^{\rho})$ time and memory.

Approximate-GCD 000000

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
 - Variant without $x_0 = q_0 \cdot p$.
- Brute force attack: 2² GCD computations.
 - From $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$
- Using Chen-Nguyen attack: $\tilde{\mathcal{O}}(2^{3\rho/2})$ time.

 - Guess r_1 and apply Chen-Nguyen on r_2 $\mathcal{O}(2^{\rho}) \cdot \tilde{\mathcal{O}}(2^{\rho/2}) = \tilde{\mathcal{O}}(2^{3\rho/2})$ time and $\tilde{\mathcal{O}}(2^{\rho/2})$ memory.

Approximate-GCD 000000

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
 - Variant without $x_0 = q_0 \cdot p$.
- Brute force attack: 2² GCD computations.
 - From $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$
- Using Chen-Nguyen attack: $\tilde{\mathcal{O}}(2^{3\rho/2})$ time.

 - Guess r_1 and apply Chen-Nguyen on r_2 $\mathcal{O}(2^{\rho}) \cdot \tilde{\mathcal{O}}(2^{\rho/2}) = \tilde{\mathcal{O}}(2^{3\rho/2})$ time and $\tilde{\mathcal{O}}(2^{\rho/2})$ memory.
- New attack: $\tilde{\mathcal{O}}(2^{\rho})$ time and memory.

Public Key Compression

Approximate-GCD

Conclusion O

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$

$$p| \operatorname{gcd} \left(\prod_{i=0}^{2^{\rho}-1} (x_1 - i), \prod_{i=0}^{2^{\rho}-1} (x_2 - i) \right)$$

- O(2^e) time and memory
- Problem: many parasitic factors.
 - Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

Public Key Compression

Approximate-GCD

Conclusion O

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$

$$p| \operatorname{gcd} \left(\prod_{i=0}^{2^{
ho}-1} (x_1 - i), \prod_{i=0}^{2^{
ho}-1} (x_2 - i)
ight)$$

- Product over Z can be computed in Õ(2^ρ) time using a product tree.
- $\tilde{\mathcal{O}}(2^{\rho})$ time and memory
- Problem: many parasitic factors.
 - Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

Public Key Compression

Approximate-GCD

Conclusion O

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$

$$p| \operatorname{gcd} \left(\prod_{i=0}^{2^{
ho}-1} (x_1 - i), \prod_{i=0}^{2^{
ho}-1} (x_2 - i)
ight)$$

- Product over $\mathbb Z$ can be computed in $\tilde{\mathcal O}(2^\rho)$ time using a product tree.
- $\tilde{\mathcal{O}}(2^{\rho})$ time and memory
- Problem: many parasitic factors.
 - Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

Public Key Compression

Approximate-GCD

Conclusion O

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$

$$p| \operatorname{gcd} \left(\prod_{i=0}^{2^{\rho}-1} (x_1 - i), \prod_{i=0}^{2^{\rho}-1} (x_2 - i) \right)$$

- Product over $\mathbb Z$ can be computed in $\tilde{\mathcal O}(2^\rho)$ time using a product tree.
- *Õ*(2^ρ) time and memory
- Problem: many parasitic factors.
 - Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

Public Key Compression

Approximate-GCD

Conclusion O

- Given polynomially many $x_i = p \cdot q_i + r_i$, find p.
- Variant of the previous equation with $x_1 = p \cdot q_1 + r_1$ and $x_2 = p \cdot q_2 + r_2$

$$p| \operatorname{gcd} \left(\prod_{i=0}^{2^{\rho}-1} (x_1 - i), \prod_{i=0}^{2^{\rho}-1} (x_2 - i) \right)$$

- Product over $\mathbb Z$ can be computed in $\tilde{\mathcal O}(2^\rho)$ time using a product tree.
- $\tilde{\mathcal{O}}(2^{\rho})$ time and memory
- Problem: many parasitic factors.
 - Can be eliminated by taking the gcd with more products,
 - and by dividing by B! for $B \simeq 2^{\rho}$.

Public Key Compression

Approximate-GCD 000000

Conclusion O

Source Code in SAGE

```
def attackGACD(rho=12,gam=1000,eta=100):
    p=random_prime(2^eta)
    s=rho
```

```
B=floor(2^(1.*rho*(s+1)/(s-1)))
fa=factorial(B)
```

```
for j in range(1,s):
    x=p*ZZ.random_element(2^(gam-eta))+ \
        ZZ.random_element(2^rho)
    z=prod([x-i for i in range(2^rho)])
    if j==1: g=z; continue
    g=gcd(g,z)
    g=prime_to_m_part(g,fa)
    if g.nbits()==p.nbits(): break
```

Public Key Compression

Approximate-GCD

Conclusion O

GACD Attack Running Time

Instance	ρ	γ	time	time [CN12]
Micro	12	10 ⁴	40 s	
Toy (Section 8)	13	$61 \cdot 10^3$	13 min	
Toy' ([CN12])	17	$1.6\cdot 10^5$	17 h	3495 h (est.)

- Chen-Nguyen attack: $\mathcal{O}(2^{3\rho/2})$ time and $\mathcal{O}(2^{\rho/2})$ memory.
- Our attack: $\mathcal{O}(2^{\rho})$ time and memory
- Time-memory tradeoffs are possible.

Public Key Compression

Approximate-GCD 000000 Conclusion

Conclusion

- Smaller public key size for the DGHV fully homomorphic encryption scheme.
 - 10 MB instead of 1 GB
- Better attack against approximate-gcd without $x_0 = q_0 \cdot p$
 - $ilde{\mathcal{O}}(2^{\rho})$ complexity instead of $ilde{\mathcal{O}}(2^{3\rho/2})$
- In the proceedings:
 - Generalization of [CMNT11] quadratic encryption technique to higher degrees.
 - DGHV without bootstrapping: analogous to RLWE without bootstrapping [BGV11].

Public Key Compression

Approximate-GCD 000000 Conclusion

Conclusion

- Smaller public key size for the DGHV fully homomorphic encryption scheme.
 - 10 MB instead of 1 GB
- Better attack against approximate-gcd without $x_0 = q_0 \cdot p$
 - $ilde{\mathcal{O}}(2^{\rho})$ complexity instead of $ilde{\mathcal{O}}(2^{3\rho/2})$
- In the proceedings:
 - Generalization of [CMNT11] quadratic encryption technique to higher degrees.
 - DGHV without bootstrapping: analogous to RLWE without bootstrapping [BGV11].

Public Key Compression

Approximate-GCD 000000 Conclusion

Conclusion

- Smaller public key size for the DGHV fully homomorphic encryption scheme.
 - 10 MB instead of 1 GB
- Better attack against approximate-gcd without $x_0 = q_0 \cdot p$
 - $ilde{\mathcal{O}}(2^{
 ho})$ complexity instead of $ilde{\mathcal{O}}(2^{3
 ho/2})$
- In the proceedings:
 - Generalization of [CMNT11] quadratic encryption technique to higher degrees.
 - DGHV without bootstrapping: analogous to RLWE without bootstrapping [BGV11].