All-But-Many Lossy Trapdoor Functions

Dennis Hofheinz (Karlsruhe Institute of Technology)

Encryption: the ”Real World”

= Many parties, many ciphertexts

A common simplification

Simpler: one user/sender, one challenge (e.g., IND-CCA)

Adversary gets C*

Justification: usually, hybrid argument works
= E.g., IND-CCA implies multi-user-multi-challenge-IND-CCA
But: connection to real world not tight

And: problematic in some cases (e.g., selective openings)

Example: Selective Openings

C*...C*

|
‘ Index set |
|

open(C~) for all ie|
g

Adversary gets pk, C *,...,C %,
openings of all C (i)
= |ntuition: adaptive corruption of multiple senders

= Security can be indistinguishability- or simulation-based

= [ntuition: adversary should not learn anything about unopened ciphertexts

= No hybrid argument, multiple challenges inherent

Overview over this talk

All-But-Many Lossy Trapdoor Functions (ABM-LTFs)
A technical tool specifically designed for the multi-user-multi-challenge case

Construction of ABM-LTFs
A new look on Waters signatures

All-But-Many Lossy Trapdoor Functions (ABM-LTFs)
A technical tool specifically designed for the multi-user-multi-challenge case

Recap: Lossy Trapdoor Functions

(Keyed) function: X Fek —F_(X)

Key can be ek (invertible mode) or ek’ (lossy mode)

Properties:
= Invertibility: F_ invertible using suitable trapdoor ik sampled with ek
= |Indistinguishability: ek = ek

= Lossiness: image set F_ (X) "much smaller” than X

Constructions from LWE, DDH, DCR (efficient!):

ek =(pk, C= Epk(b))
(Invertible mode: b=1, lossy mode: b=0)

F,(X) = C*=E_(bX)

Recap: PKE security from LTFs

Adversary gets pk, C*

Intuition: pk = LTF key, C* contains LTF image

Security: switch LTF to lossy mode, A gets (almost) no info on msg

Problem with IND-CCA: cannot decrypt when in lossy mode
Solution: All-But-One Lossy Trapdoor Functions [PW08]

'I'*
Does not work with many challenge ciphertexts!

All-But-N LTFs [HLov11]

|dea to cope with multi-challenge setting: many lossy tags!

Construction based on Paillier/DJ encryption:

*
N

Pick degree-N polynomial f(T) = . fT' with zeros T .*, ..., T
ek =(pk, C, = Epk(fo), ooy @ B 50)
For(X) = (ITCT)= E_(f(T) X)

Problem: space complexity linear in the number of challenges

= Actually, this is necessary to encode precisely N lossy tags
= Yields SO-CCA secure PKE that depends on number of challenges
= ldea: each lossy tag T." corresponds to a challenge ciphertext

Our goal: LTFs with many lossy tags!

All-But-Many LTFs

= |ntuition/sketch of definition:

= There are (superpoly) many lossy tags and (superpoly) many invertible tags

= Lossy and invertible tags computationally indistinguishable

Tag sets (x marks lossy tags):

All-But-One LTF: All-But-N LTF: All-But-Many LTF:

VA v AVAVAVE V- AN
BIESTITTA
SERRLRLILRLRLLLRLRELRS

SRS
LIERRLELRLELREILLLLLLRLEILRKS
I RIILIERILIILRLRS

KL
;:,90
35
35
55
0
3555
%
3
%5
%5
%
%
:0
S
5
&5
KL
SIS
X5

‘p
3

SRS
90505058
ZRERES
55
0!:?’

XK
Y

A .v’v’
KX
RS
elele
5
SRR
&R

QRS

L

e

XD

%%

%

20
00::,0, <

2

@»

R
2
%&?
959599
RS
KK
R
KR
RS
SRS
X2

345

K8
35K

IR

X

= Invertible tags easy to sample, but trapdoor required to sample lossy tags

= Syntactic similarity to blinded signatures (valid signature = lossy tag)

Construction of ABM-LTFs
A new look on Waters signatures

First attempt

Syntactic similarity to ”blinded signatures” (valid sig = lossy tag)

First attempt: so let's simply (Paillier/DJ-)encrypt signatures!

Something unique and public
(e.g., chameleon hash)

T = E(Sign(H))

Evaluation "magically” verifies signature inside encryption
...should end up with C = E(0) iff sig is valid, then sets Y:=C*
= Sigvalid = C=E(0) = F,(X) = C*=E(0) lossy

= Siginvalid = C=E(d)ford#0 = F_(X)=CX=E(dX) invertible

Problem: (Paillier/DJ-)encryption only additively homomorphic

= How to evaluate signature using only addition in Z?

Working with encrypted matrices

Idea 1: use matrices instead of single elements (inspired by [PW08])

EM,,) EM,,) EM,,)
T —EM)= E(M,,) EM,,) E(M,,)
E(M,,) EM,,) EM

3,3)

Use “encrypted” matrix-vector multiplication:

X, [T EM,)*
ForX)=EM)g X, §={ ILEM,) §= E(M-X)
x3 Hj E(M3,j)Xj

Fek’T lossy & M non-invertible < det(M)=0 (or non-invertible)

Payoff: det(M) can be cubic in encrypted values

Use determinant to encode more complex computations

Translating Waters signatures

» ldea 2: emulate Waters signatures in Z,

= Use encryption instead of exponentiation (g2 becomes E(a))
= Pairing becomes Paillier/DJ multiplication (encode verification into det(M)!)
= CDH in G becomes "Paillier-No-Mult”: E(a), E(b) — E(ab) hard

= All-But-Many LTF construction (slightly simplified):

T =(R=E(r), Z=E(z), CHF-rand) (translated Waters signature)

E(z) E(a) E(r) . _ _
T EM)={ Eb) E(1) EQ) with E(h_) H(t) th th
E(h) E@©) E(1) for t=CHF(R,Z;rnd)

Fek,T(X) = E(M) - X = E(M-X) (implicit Waters verification)

Note: det(M) = z — (ab+rh), so: T lossy < M singular < z =ab + rh

Last slide: applications

Efficient CCA-secure Selective Opening Security

= Many challenges, need to make exactly challenges lossy
= Palillier-based ABM-LTFs give first efficient SO-CCA scheme

(Not very efficient) tight IND-CCA security for PKE

= Make all challenges lossy simultaneously (tightly secure ABM-LTF)
= Different ABM-LTF required (not very efficient, based on g-SDDH)

CCA-secure Key-Dependent Message security

= Similar concepts, but more structured ABM-LTFs required (upcoming)

Leakage resilience?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

