

All-But-Many Lossy Trapdoor Functions

Dennis Hofheinz (Karlsruhe Institute of Technology)

Overview over this talk

All-But-Many Lossy Trapdoor Functions (ABM-LTFs)
A technical tool specifically designed for the multi-user-multi-challenge case

Construction of ABM-LTFs
A new look on Waters signatures

Next stop

All-But-Many Lossy Trapdoor Functions (ABM-LTFs)
A technical tool specifically designed for the multi-user-multi-challenge case

 (Keyed) function:

 Key can be ek (invertible mode) or ek' (lossy mode)

 Properties:

 Invertibility: F
ek

 invertible using suitable trapdoor ik sampled with ek

 Indistinguishability: ek ≈ ek'

 Lossiness: image set F
ek'

(X) ”much smaller” than X

 Constructions from LWE, DDH, DCR (efficient!):

Recap: Lossy Trapdoor Functions

F
ekX F

ek
(X)

ek = (pk, C = E
pk

(b))

(Invertible mode: b=1, lossy mode: b=0)

F
ek

(X) = CX = E
pk

(bX)

All-But-N LTFs [HLOV11]

 Idea to cope with multi-challenge setting: many lossy tags!

 Construction based on Paillier/DJ encryption:

 Problem: space complexity linear in the number of challenges
 Actually, this is necessary to encode precisely N lossy tags

 Yields SO-CCA secure PKE that depends on number of challenges

 Idea: each lossy tag T
i
* corresponds to a challenge ciphertext

 Our goal: LTFs with many lossy tags!

Pick degree-N polynomial f(T) =  f
i
Ti with zeros T

1
*, …, T

N
*

ek = (pk, C
0
 = E

pk
(f

0
), …, C

N
 = E

pk
(f

N
))

F
ek,T

(X) = ( C
i
Ti)X = E

pk
(f(T) X)

All-But-Many LTFs

 Intuition/sketch of definition:
 There are (superpoly) many lossy tags and (superpoly) many invertible tags

 Lossy and invertible tags computationally indistinguishable

 Invertible tags easy to sample, but trapdoor required to sample lossy tags

 Syntactic similarity to blinded signatures (valid signature = lossy tag)

All-But-One LTF:

x

Tag sets (x marks lossy tags):

All-But-N LTF:

x

xx

x

xx
x

All-But-Many LTF:

Next stop

Construction of ABM-LTFs
A new look on Waters signatures

 Syntactic similarity to ”blinded signatures” (valid sig = lossy tag)

 First attempt: so let's simply (Paillier/DJ-)encrypt signatures!

 Evaluation ”magically” verifies signature inside encryption

...should end up with C = E(0) iff sig is valid, then sets Y:=CX

 Sig valid  C = E(0)  F
ek,T

(X) = CX = E(0) lossy

 Sig invalid  C = E(d) for d≠0  F
ek,T

(X) = CX = E(dX) invertible

 Problem: (Paillier/DJ-)encryption only additively homomorphic

 How to evaluate signature using only addition in Z
N
?

First attempt

T = E(Sign(H))

Something unique and public
(e.g., chameleon hash)

 Idea 1: use matrices instead of single elements (inspired by [PW08])

 Use ”encrypted” matrix-vector multiplication:

 F
ek,T

 lossy  M non-invertible  det(M)=0 (or non-invertible)

 Payoff: det(M) can be cubic in encrypted values

 Use determinant to encode more complex computations

Working with encrypted matrices

T → E(M) =()E(M
1,1

) E(M
1,2

) E(M
1,3

)
E(M

2,1
) E(M

2,2
) E(M

2,3
)

E(M
3,1

) E(M
3,2

) E(M
3,3

)

F
ek,T

(X) = E(M) ◦ = = E(M·X)()
j
 E(M

1,j
)Xj


j
 E(M

2,j
)Xj


j
 E(M

3,j
)Xj()X

1

X
2

X
3

 Idea 2: emulate Waters signatures in Z
N

 Use encryption instead of exponentiation (ga becomes E(a))

 Pairing becomes Paillier/DJ multiplication (encode verification into det(M)!)

 CDH in G becomes ”Paillier-No-Mult”: E(a), E(b) → E(ab) hard

 All-But-Many LTF construction (slightly simplified):

Note: det(M) = z – (ab+rh), so: T lossy  M singular  z = ab + rh

Translating Waters signatures

()E(z) E(a) E(r)
E(b) E(1) E(0)
E(h) E(0) E(1)

with E(h) = H(t) = h
0
+∑ t

i
h

i

 for t = CHF(R,Z;rnd)
T → E(M) =

ek = (A=E(a), B=E(b), H
i
=E(h

i
) (i=0,...,n)) (translated Waters public key)

T = (R=E(r), Z=E(z), CHF-rand) (translated Waters signature)

F
ek,T

(X) = E(M) ◦ X = E(M·X) (implicit Waters verification)

 Efficient CCA-secure Selective Opening Security
 Many challenges, need to make exactly challenges lossy

 Paillier-based ABM-LTFs give first efficient SO-CCA scheme

 (Not very efficient) tight IND-CCA security for PKE
 Make all challenges lossy simultaneously (tightly secure ABM-LTF)

 Different ABM-LTF required (not very efficient, based on q-SDDH)

 CCA-secure Key-Dependent Message security
 Similar concepts, but more structured ABM-LTFs required (upcoming)

 Leakage resilience?

Last slide: applications

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15

