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This bilinear operator encodes the operation “XOR"
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The Hero of the Sport Match

01
A= (7o)
This bilinear operator encodes the operation “XOR"
Once you discover A the problem is easy.
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Philosophy: Three Easy Steps

1. Begin with a natural cryptological problem
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Philosophy: Three Easy Steps

1. Begin with a natural cryptological problem

2. Recast problem in terms of multilinear algebra:
“Does there exist a multilinear operator with these
properties? If so, can | construct one?”
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Philosophy: Three Easy Steps

1. Begin with a natural cryptological problem

2. Recast problem in terms of multilinear algebra:
“Does there exist a multilinear operator with these
properties? If so, can | construct one?”

3. Draw on a rich array of techniques in algebraic
geometry to to find or disprove the key multilinear
operator
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The Robust Coin Flipping Problem

The problem we solved is fun
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The Robust Coin Flipping Problem

The problem we solved is fun
But...
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The Robust Coin Flipping Problem

The problem we solved is fun

But...

We hope to convince you that

the techniques are serious and practical.
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The Robust Coin Flipping Problem

Alice has p = g + r programmable random sources:
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The Robust Coin Flipping Problem

Alice has p = g + r programmable random sources:
q of them are faulty;
r of them are reliable.
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The Robust Coin Flipping Problem

Alice has p = g + r programmable random sources:
q of them are faulty;
r of them are reliable.

And the two types are indistinguishable!
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The Robust Coin Flipping Problem

Alice has p = g + r programmable random sources:
g of them are faulty;
r of them are reliable.

And the two types are indistinguishable!

She wishes to generate a coin flip such that
the probability of heads is «
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The Robust Coin Flipping Problem

Alice has p = g + r programmable random sources:
g of them are faulty;
r of them are reliable.

And the two types are indistinguishable!

She wishes to generate a coin flip such that
the probability of heads is «
the probability of tails is 1 — «.
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Rational « Is Easy

@ Say a = 7.
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@ Say a = 7.
@ Alice programs source i to pick x; from Z/bZ with

the uniform distribution.
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Rational « Is Easy

@ Say a = 7.
@ Alice programs source i to pick x; from Z/bZ with

the uniform distribution.

p
@ Heads if Zx; € {0,...,a — 1}, tails otherwise.
i=1
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Rational « Is Easy

@ Say a = 7.

@ Alice programs source i to pick x; from Z/bZ with
the uniform distribution.

p
@ Heads if Zx; € {0,...,a — 1}, tails otherwise.
i=1

Works if even one source is reliable (i.e. if r > 1) |
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When p = 2, Every « is Rational
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When p = 2, Every a is Rational
Any bilinear form A has at most one associated a. |
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When p = 2, Every « is Rational

Any bilinear form A has at most one associated a. l
When p =2, a € Q. \

@ Since A is a zero-one matrix, it is fixed by any field
automorphism of C/Q
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When p = 2, Every « is Rational

Any bilinear form A has at most one associated a. l
When p =2, a € Q. \

@ Since A is a zero-one matrix, it is fixed by any field
automorphism of C/Q

@ But any nontrivial Galois conjugate of a would
violate the lemmal!
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Restatement using Multilinear Algebra

For p =3, g =1, we want to find a {0, 1}-hypermatrix
A and probability vectors B such that, for all
probability vectors x(/),

o = AxD, B2, gAY = A(BD, X 5B)) = A(BD), 5@ x3)),
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An Example Solution

5—v5) L(5-+5) iV5)

G. Kopp & J. Wiltshire-Gordon (U of M) Robust Coin Flipping April 15, 2012



An Example Solution

B = (Y-1+V5) | 13-5))
, 33— /5)
5 (%(—1+\/§)>
53 — (1_10(5_\/5) %(5—\/5) %‘/g)
a = Vo -1
- T
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Any « is an Algebraic Number?
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Any « is an Algebraic Number?

a = AW, 5@, 50)
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Any « is an Algebraic Number?

a = AW, 5@, 50
ad(xW, 5@, 5) = A, 5, 5))
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Any « is an Algebraic Number?

o A(x(l), 5(2), 5(3))
ad(x, 5@, gy = A, 5, 51)
(o = A)(xM, 3?53l = 0
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Any « is an Algebraic Number?

a = AW, 5@, 50
ad(x, 5@, gy = A, 5, 51)
(o = A)(xD, 5D, 5) = 0
So oo — A satisfies the degeneracy conditions:
(o = A)(x, 82, 5) = 0
(aJ_A)(5(1)7X(2)75(3)) -0
(0 = AW, 5 x) = 0
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Any « is an Algebraic Number?

a = A(x(l),ﬁ(2),ﬁ(3))
OéJ(X(l)’ 8@ 5(3)) _ A(x(l), B@ 5(3))
(o — A)(X(1)76(2)’5(3)) -0
So oo — A satisfies the degeneracy conditions:

(o = A)(x, 82, 5) = 0

(o — A)(B(l),x(z),6(3)) -0

(o — A)(ﬁ(l),ﬂ(z),x@)) -0

< Det(aJ—A)=0
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Any « is an Algebraic Number

@ The hyperplane defined by (aJ — A)(x) =0 is
tangent to the Segre variety at the point
BV @...@ B8P,
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Any « is an Algebraic Number

@ The hyperplane defined by (aJ — A)(x) =0 is
tangent to the Segre variety at the point
BV @...@ B8P,

@ Projective duality gives the set of tangent
hyperplanes the structure of a variety, too.
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@ The hyperplane defined by (aJ — A)(x) =0 is
tangent to the Segre variety at the point
BV @...@ B8P,

@ Projective duality gives the set of tangent
hyperplanes the structure of a variety, too.

@ Under favorable conditions, this variety is cut out by
a single polynomial Det. So Det(aJ — A) = 0.
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BV @...@ B8P,

@ Projective duality gives the set of tangent
hyperplanes the structure of a variety, too.

@ Under favorable conditions, this variety is cut out by
a single polynomial Det. So Det(aJ — A) = 0.
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Any « is an Algebraic Number

@ The hyperplane defined by (aJ — A)(x) =0 is
tangent to the Segre variety at the point
BV @...@ B8P,

@ Projective duality gives the set of tangent
hyperplanes the structure of a variety, too.

@ Under favorable conditions, this variety is cut out by
a single polynomial Det. So Det(aJ — A) = 0.

@ There's a problem when Det(tJ — A) =0...We
repeat the argument is a suitable singular stratum.
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Constructing any Algebraic o

@ Case p =3, g =1 is the core of the proof of the
constructive direction for algebraic a.
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@ Case p =3, g =1 is the core of the proof of the
constructive direction for algebraic a.

Proof in two steps:
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Constructing any Algebraic o

@ Case p =3, g =1 is the core of the proof of the
constructive direction for algebraic a.

Proof in two steps:

@ Use algebraic geometry to produce a point on the
variety
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Constructing any Algebraic o

@ Case p =3, g =1 is the core of the proof of the
constructive direction for algebraic «.

Proof in two steps:

@ Use algebraic geometry to produce a point on the
variety

@ Use Diophantine approximation and analysis to
wiggle the solution into the positive cone
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Constructing any Algebraic o

@ Deduce general case from p =3, g = 1 case using
the Bureaucracy Lemma.
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@ The algebraic geometry of multilinear operators is a
powerful tool...
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@ The algebraic geometry of multilinear operators is a
powerful tool...

@ which can be applied to cryptologic problems in a
serious way.
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@ The algebraic geometry of multilinear operators is a
powerful tool...

@ which can be applied to cryptologic problems in a
serious way.

@ Thank you!
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