
How to Compute under AC0 Leakage
without Secure Hardware

Guy Rothblum
Microsoft Research

Silicon Valley

Sensitive computations:

• Cryptographic Algorithms
– Secret Key

• Proprietary Search Algorithm,
Private Medical Data Base Processing…
– Secret Program, Data

Protecting Sensitive Computations
from Leakage/Side-Channel Attacks

Mobile Devices

Remote Computing

… are Performed Remotely

Computation Internals Might Leak

Timing [Kocher 96]

Power
Consumption
[Kocher et al. 98]

EM Radiation
[Quisquater 01]

Cache [Kocher 96]

Two Approaches to
Fighting Leakage Attacks

• Consider leakage at design time
[AGV09,…]
build systems secure against leakage attacks

• “Leakage resilience compiler”
[GO96, ISW03,…]
transform any algorithm so that,
even under leakage,
no more than black-box behavior is exposed

HOLY GRAIL

Our Goal: Leakage-Resilience Compiler

Even given leakage,
execution “looks like”
black-box access to Cy(x)

C C’

x
secret y

Cy(x)
Cy(x)

x
state

Offline (only once): no leakage
Process C and y
s1 ← Init(C,y,r0)

Online, in each execution t ← 1,2,3…
Adv chooses input xt

outputt ← C’(xt,st,rt), st+1 ← Update(st,rt)
Adv observes: outputt + Leakaget(xt,st,rt)

Leakaget: leakage function chosen from
class of permissible functions

C’

x

Cy(x)

state

Offline/Online Leakage Model

Offline (only once): no leakage
Process C and y
s1 ← Init(C,y,r0)

Online, in each execution t ← 1,2,3…
Adv chooses input xt

outputt ← C’(xt,st,rt), st+1 ← Update(st,rt)
Adv observes: outputt + Leakaget(xt,st,rt)

Leakaget: leakage function chosen from
class of permissible functions

C’

x

Cy(x)

state

Offline/Online Leakage Model

In this work - AC0 function
with bounded output length

What is AC0?

A function L is in AC0 if it can be computed by a
poly-size O(1) depth boolean circuit with
unbounded fan-in AND, OR (and NOT) gates

Some known lower bounds on AC0

• can’t compute parity of n bits [H86]
• can’t compute inner product of n-bit vectors
• can’t “compress” parity or inner product

[HN10,DI06]

New Result: Compiler for AC0 Leakage

Can transform any poly time Cy into C’
On security parameter κ:

1. Leakaget is AC0, output bound = λ(κ) bits
2. |C’|=O(κ3·|C|)
3. Assuming the λ-IPPP assumption,

exists simulator SIM, s.t.

VIEWLeakage(C’) ≈ SIMCy

λ-IPPP Assumption

Known limits on power of AC0 circuits: [H86,DI06]
given x,y∈{0,1}κ, can’t compute or compress
<x,y> using an AC0 circuit

λ-Inner Product w. Pre-Processing (IPPP) assump
1. poly time to pre-process x ⇒ f(x)
2. poly time to pre-process y ⇒ g(y)
3. given f(x),g(y), can’t compute or compress

<x,y> to λ(n) bits using an AC0 circuit

Long standing open problem in complexity theory

New Result: Compiler for AC0 Leakage

Can transform any poly time Cy into C’
On security parameter κ:

1. Leakaget is AC0, output bound = λ(κ) bits
2. |C’|=O(κ3·|C|)
3. Assuming the λ-IPPP assumption,

exists simulator SIM, s.t.

VIEWLeakage(C’) ≈ SIMCy

Prior Work on General Compilers

“Wire-probe” (either/or) leakage functions
[ISW 03],[A10] no hardware, unconditional

“Local” (OC) leakage functions [MR04]
[GR10],[JV10] secure hardware + crypto
[DF12] secure hardware, unconditional
[GR12] no hardware, unconditional

AC0 leakage functions
[FRRTV10] secure hardware, unconditional

Compiler: High-Level View
(a la [ISW03],[FRRTV10])

• Init – “encrypt” bits of y
Enc(b) ⇒ “bundle of bits” - random vector, parity b

(AC0 leakage cannot determine parity)

• Single execution
Homomorphically compute on “bundles”

(computation not in AC0, but resists AC0 leakage,
secure hardware used for “blinding”)

• Multiple executions
leakage on bundles encrypting y might accumulate

(secure hardware used to “refresh” bundles)

[FRRTV10] Secure Hardware

Functionality:
generates a random bundle with parity 0
assume: no leakage on generation procedure

Security:
simulator can create view where the bundle
parity is 1, AC0 leakage can’t tell the difference

Uses in the construction:
• “blinding” homomorphic computations
• refreshing y bundles between executions

New Tool: “Bundle Bank”
(a la [GR12])

“Realize secure hardware”, even though
leakage operates also on generation procedure

Functionality:
generate bundles v1,v2,…,vT, s.t. parity vi=0

Security:
Simulator on input (b1, b2,…,bT)
generate bundles v1,v2,…,vT, s.t. parity vi=bi

AC0 leakage on REAL and SIM is statistically close

Generating One New Bundle

Init (no leakage):
choose m bundles c1…cm with parity 0

Generating cnew (under leakage):
take random linear combination r

C = [c1,…,cm] r∈{0,1}m cnew

Simulated Generation

Init (no leakage):
choose m bundles c1…cm with parity 0

Generating cnew (under leakage):
take random linear combination r

parities are random: x∈{0,1}m

take biased linear combination r s.t. <x,r> = b
(⇒ cnew parity equals b)

Secure?
AC0 leakage can’t tell if ci’s have parity 0 or 1,
and can’t tell if r used in generation is biased

Bundle Bank Security
Consider AC0 leakage on REAL and SIM

generating a sequence of 0-bundles

Want: AC0 security reduction from parity to
distinguishing REAL and SIM

Obstacle: generation procedure not in AC0 (nor
are many other computations in construction)

Our main technical contribution:
AC0 security reduction from IPPP to distinguishing

leakage on REAL and SIM
Why IPPP? Use pre-processing to set up views

Summary

• Compiler transforms any computation into one
that resists AC0 leakage (under IPPP assumption)

• Strong black-box security
• Secure hardware is not needed

Questions
• IPPP assumption
• Constant leakage rate
• Connections to obfuscation
• Other leakage classes

THANK YOU!

