To Hash or Not To Hash Again?
(In)differentiability Results for H2 and HMAC

Yevgeniy Dodis
Thomas Ristenpart
John Steinberger
Stefano Tessaro

(New York University)
(University of Wisconsin)
(Tsinghua University)
(MIT)

cryptographic hash function
H:{0,1} = {0,1}

M- H H HMAC(K,M)

[[
K. K keyed cryptographic hash

in out HMAC : {O,]_}* X {O,l}* - {O,l}n

HMAC construction

(Bellare, Canetti K., K, derived from K (details to come)

K k 1996
AWEVKAZOL T HMACIKM) = H(Ko || HIK, || M))

Designed for message authentication with secret keys ...
... but now used in a variety of ways

Usage of HMAC

TLS handshake: PP
TLS Connection HMAC(gXV) cce) &= C 8 https://www.google.com/;earch?q=hm

€ >
TLS record layer:

HMAC(K, Ctxt) | Go gle hmac

-" hmac - Google Search

IPSec tunnel
Disk encryption € * | search
uses PKCSHS: 3 EI<I\EA"A2C((HKDF)‘ 0
nonces, g*
HMAC(pw, salt) “ & Web Hash-based message authenti
en.wikipedia.org/wiki/Hash-based_me:
(/ — mages i cryogracki sme i il s
00 9/ “Kgm;
= . . “" ” ..

WPA WiFi protocol HI\/IAF used in settlr.\gs V\{here key” is: he
uses PKCSH5: * uniform, secret bit string (K, .,) i
HMAC(pw, ssid) * secret, but not uniform bit string (g*) —

* |low-entropy, variable-length secrets (pw)
* public (nonces)

Security of HMAC?

When K is secret, uniform, fixed-length bit string?

Standard-model proofs of PRF/unforgeability security
[Bellare, Canetti, Krawczyk 1996] [Bellare 2006]

When input includes high-entropy, secret bit string?

Standard-model proofs that HMAC is a randomness
extractor

[DGKHR 2004] [FPZ08] [K10]

Security of HMAC?

Elsewhere?

Proofs model HMAC as a
(keyed) random oracle (RO) [BR93] K,M=RO ~RO(K,M)

Each pair K,M mapped to
uniformly chosen output RO(K,M)

Examples: ! Public value
HKDF/IKEv2 [K10] HMAC(salt,S)
v Non-uniform, varying length
PKCS#5 [BRT12] HMAC(pw,salt)

secret. Often low entropy.

Hedged crypto [RY10] HMAC(I},I\/I)

Adversarially controlled

Practitioners expect that HMAC behaves “randomly” for any K,M

HMAC as a RO

Let’s (generously) assume H is perfectly secure (itself a random oracle)
Does HMAC “behave like” a RO?

\ ;
M- H H — HMAC(K,M) = K,M—RO [~ RO(K,M)
n—rn
Each pair K,M mapped to
Kin |<out uniformly chosen output RO(K,M)

Formalize “behave like” RO via indifferentiability [MRHO4]

HMAC and H? as ROs

Let’s (generously) assume H is perfectly secure (itself a random oracle)

Does HMAC “behave like” a RO?

E N ,
M- H H HMAC(K,M) =
/

K,M

RO ~ RO(K,M)

Each pair K,M mapped to
uniformly chosen output RO(K,M)

Formalize “behave like” RO via indifferentiability [MRHO4]

Does H? “behave like” a RO? \
?

M~ H H ~ H%(M) ~

“Practical cryptography” [Ferguson, Schneier 2003]

VI

RO~ RO(M)

Each pair M mapped to
uniformly chosen output RO(M)

One expects the answers to be “yes”

Strong positive intuition:
* Both designed to prevent length-extension attacks
e Compose RO with itself, result should behave like a RO

Confusingly, they refer to this as
the “HMAC Construction”. It’s not HMAC

[CDMPO5] prove H2(0? || M) indifferentiable from a RO,
when H is Merkle-Damgard-style hash function (e.g., SHA-256)

[K10] suggests that the [CDMPO5] proof extends to the real HMAC

Summary of our results

Uncover that HMAC has weak key pairs
(1) Colliding key pairs K#K s.t. HMAC(K,M) = HMAC(K’,M)

(2) Ambiguous key pairs no inner/outer H domain separation
KzK st K. =K, K’ = Kyt

H?and HMAC w/ ambiguous key pairs have similar issues

* At best weak concrete security from indifferentiability
e Upper bound proof that H? is “weakly” indifferentiable
 Example (vulnerable) setting: mutual proofs of work

Avoid weak key pairs in HMAC, get strong indifferentiability

ICDMPOS5]: formalize “behave like a RO” via
indifferentiability framework of [MIRHO4]

Indifferentiability from a RO

Real H2 — H
))
D

L o1

H, RO both random functions

RO

<€— Sim |deal

t

t
D

s o1

Indifferentiable if exists efficient Sim s.t. for all efficient D

Advindifi(H2 D Sim) =

Pr[Real(D) =>1]—Pr[ldeal(D)=>1]<¢

ICDMPOS5]: formalize “behave like a RO” via
indifferentiability framework of [MIRHO4]

Indifferentiability from a RO

Real |HMAC—> H i <— Sim Ideal
Query K,M
D (D or Sim
chooses K)

|—> 0/1 ! |—> 0/1

H, RO both random functions

Indifferentiable if exists efficient Sim s.t. for all efficient D
Advindiff(H2 D Sim) = Pr[Real(D)=>1]-Pr[ldeal(D)=>1]<¢
Advindif(HMAC,D,Sim) = Pr[Real(D)=>1]-Pr[ldeal(D)=>1]<¢

ICDMPOS5]: formalize “behave like a RO” via
indifferentiability framework of [MIRHO4]

(Conjectured) HMAC
indifferentiability

| > Applications proven

+ MRHO4] secure using HMAC
[BRT12],.[K10],[RY1.0] p.roofs composition (H still ideal)
of security for applications theorem
using RO
5 Rules out attacks that
Limitati abuse structure of HMAC
IMIitations:

 [RSS11]: composition only applies to “single-stage” games
* Concrete security of indifferentiability important!

Normal indifferentiability: Sim makes O(q) queries
Weak indifferentiability: Sim makes >0(q) queries

A closer look at HMAC
Let H:{0,1}* ->{0,1}" be parameterized by a block length d < n

HMAC(K,M):
M — H H = HMACKM) £ 1) > d then K < H(K)

[[else K’ <- K

K"’ <- K || 01Kl

K., <- K’ @ipad

K, <- K" ® opad

Return H(K, || H(K,, || M))

ipad # opad fixed strings

A closer look at HMAC
Let H:{0,1}* ->{0,1}" be parameterized by a block length d < n

HMAC(K,M):

If |[K| >dthen K’ <-H(K)
else K’ <- K

K” <- K’ || 01Kl

K., <- K’ @ipad

K., <- K” ® opad

Return H(K, || H(K,, || M))

ipad # opad fixed strings

A closer look at HMAC

Let H:{0,1}* ->{0,1}" be parameterized by a block length d < n

1) Colliding key pairs

Any K1 # K2 such that
HMAC(K1,M) = HMAC(K2,M)

Example: K2 = K1||0 |K1|<d

Simple distinguisher breaking
indifferentiability with 2 queries

Possible security issue anywhere
variable-length keys used

No colliding keys if use
fixed-length keys (and H is CR)

HMAC(K,M):

If |[K| >dthen K’ <-H(K)
else K’ <- K

K” <- K || 09-IK1

K., <- K’ @ipad

K, <- K" ® opad

Return H(K, || H(K,, || M))

ipad # opad fixed strings

D
Query left oracle on (K,M) to get Y
Query left oracle on (K||0,M) to get Y’
IfY=Y thenretl
ret 0

A closer look at HMAC
Let H:{0,1}* ->{0,1}" be parameterized by a block length d < n

1) Colliding key pairs HMAC(K,M):
Any K1 # K2 such that It K] >dthen K'<-H(K)
HMAC(KL,M) = HMAC(K2,M) | ElseKi<-K
K"’ <- K" || 0 I€]
Example: K2 = K1||0 |K1|<d K. <-
K. .<-

out

Return H(K, || H(K,, || M))

ipad # opad fixed strings
Any K1 # K2 such that

I<]'in = |<2out |<2in = K:I'out
Example: K2 = K1 ®ipad ®opad |K1|=|K2|=d

H(K1,, || X)=H(K2,,|| X) Noinner/outer H
H(K2,, || X)=H(K1,,]|| X) domain separation.

For all X:

out |

Summary of HMAC indifferentiability

Key space includes Indifferentiable?

Colliding key pairs No

Ambiguous key pairs

(no colliding key pairs) At most weak @
Keys K of fixed length

IK| < d-1 Yes

- Avoids both kinds of weak key pairs:

Indifferentiability upper bound (simplified)

For HMAC with restricted keys, exists Sim such that for any D
Advindf(HMAC,D,Sim) < O(g?/2")

Sim makes O(q) queries

Lack of inner/outer domain separation

M= H HHFHMAH FH20w)

) Output of H? “leaks” an internal
M" = H(|V|) value for another hash computation

* Prior indifferentiable constructions avoid leaking
intermediate values
e Extension attacks abused such leaks

Indifferentiability lower and upper bounds (simplified)

Real H2 —> H i RO [€— Sim Ideal
) t i))
D i D
I—> 0/1 M:c]kes O(q) ‘_\ i

ueries
Lower bound: d

Must make ~O(q?)
queries to succeed

We give D making q, left queries and g right queries such that

for any Sim making q, queries:

Advndfi(H2,D,Sim) > 1 -q./ (g, 9g)

Upper bound:

We give Sim such that for any D making g queries

Advindifi(H2 D Sim) < g2/ 2"

Indifferentiability lower and upper bounds (simplified)

Real HMAC — H RO €— Sim |deal

r 1 t 1
D D

I—> 0/1 Makes O(q) ‘_\ o

Must make ~O(q?)
queries to succeed

ueries
Lower bound: d

We give D, making q, left queries and q right queries including
, such that for any Sim making q. queries:

Advirdf(HMAC,D,Sim) > 1 -q./ (9, qz)

Upper bound: 7?7?77
Indifferentiability for (but no colliding keys)
probably holds with Sim making O(g?)queries. We don’t have a proof.

Does g2 versus q really matter?

In paper we provide an example:
mutual proofs of work protocol

vulnerable using H?
or HMAC with secure using RO

ambiguous key pairs

Vulnerabilities in practice?

\
0$. TLS handshake: ®0o
TLS Connection HMAC(ng) cce) &= é {5 https://www.google.com/search?q=hrr

€ >
TLS record layer:

O
O™ HMAC(K,,,, Ctxt) Google hmac

-" hmac - Google Search

IPSec tunnel

i] <€ >
Disk encryption KEv2 (HKDF): —
uses PKCS#5: \ HMAC ' o)
nonces, g
HMAC(PW, Salt) \ ’ Web Hash-based message authenti
q “ \ en.wikipedia.org/wiki/Hash-based_me:
Q ' *' Images The cryptographic strength of the HM;
Q. 4 0 The size of the output of HMAC is the
(O O O) Maps Definition (from RFC 2104) - Implemer
oo Videos
WPA WiF prOtOCOI - - N HMAC: Keyed-Hashing for Me:
uses PKCS#H5: o www.etf.org/rfc/fc2104.txt
Shoppi Abstract This document describes HN
H MAC(pWw, ssid) opping using cryptographic hash functions. H

ok Most applications already
avoid weak key pairs

Discussion

Results extend to when H is an iterative hash function
(e.g., SHA-1, SHA-256, ...)

In theory, we can fix H2 and HMAC, but deployment
would be a ... hurdle

Summary of our results

Uncover that HMAC has weak key pairs
(1) Colliding key pairs K#K s.t. HMAC(K,M) = HMAC(K’,M)

(2) Ambiguous key pairs no inner/outer H domain separation
KzK st K. =K, K’ = Kyt

H?and HMAC w/ ambiguous key pairs have similar issues

* At best weak concrete security from indifferentiability
e Upper bound proof that H? is “weakly” indifferentiable
 Example (vulnerable) setting: mutual proofs of work

Avoid weak key pairs in HMAC, get strong indifferentiability

