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cryptographic hash function
H:{0,1} = {0,1}

M- H H HMAC(K,M)

[ [
K. K keyed cryptographic hash

in out HMAC : {O,]_}* X {O,l}* - {O,l}n

HMAC construction

(Bellare, Canetti K., K, derived from K (details to come)

K k 1996
AWEVKAZOL T HMACIKM) = H( Ko || HIK, || M) )

Designed for message authentication with secret keys ...
... but now used in a variety of ways



Usage of HMAC
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Disk encryption € * | search
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HMAC( pw, salt) “ & Web Hash-based message authenti
en.wikipedia.org/wiki/Hash-based_me:
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WPA WiFi protocol HI\/IAF used in settlr.\gs V\{here key” is: he
uses PKCSH5: * uniform, secret bit string (K, .,) i
HMAC( pw, ssid ) * secret, but not uniform bit string (g*) —

* |low-entropy, variable-length secrets (pw)
* public (nonces)




Security of HMAC?

When K is secret, uniform, fixed-length bit string?

Standard-model proofs of PRF/unforgeability security
[Bellare, Canetti, Krawczyk 1996] [Bellare 2006]

When input includes high-entropy, secret bit string?

Standard-model proofs that HMAC is a randomness
extractor

[DGKHR 2004] [FPZ08] [K10]



Security of HMAC?

Elsewhere?

Proofs model HMAC as a
(keyed) random oracle (RO) [BR93] K,M=RO ~RO(K,M)

Each pair K,M mapped to
uniformly chosen output RO(K,M)

Examples: ! Public value
HKDF/IKEv2 [K10] HMAC(salt,S)
v Non-uniform, varying length
PKCS#5 [BRT12] HMAC(pw,salt)

secret. Often low entropy.

Hedged crypto [RY10] HMAC(I},I\/I)

Adversarially controlled

Practitioners expect that HMAC behaves “randomly” for any K,M



HMAC as a RO

Let’s (generously) assume H is perfectly secure (itself a random oracle)
Does HMAC “behave like” a RO?

\ ;
M- H H — HMAC(K,M) = K,M—RO [~ RO(K,M)
n—rn
Each pair K,M mapped to
Kin |<out uniformly chosen output RO(K,M)

Formalize “behave like” RO via indifferentiability [MRHO4]




HMAC and H? as ROs

Let’s (generously) assume H is perfectly secure (itself a random oracle)

Does HMAC “behave like” a RO?

E N ,
M- H H  HMAC(K,M) =
/

K,M

RO ~ RO(K,M)

Each pair K,M mapped to
uniformly chosen output RO(K,M)

Formalize “behave like” RO via indifferentiability [MRHO4]

Does H? “behave like” a RO? \
?

M~ H H ~ H%(M) ~

“Practical cryptography” [Ferguson, Schneier 2003]

VI

RO~ RO(M)

Each pair M mapped to
uniformly chosen output RO(M)



One expects the answers to be “yes”

Strong positive intuition:
* Both designed to prevent length-extension attacks
e Compose RO with itself, result should behave like a RO

Confusingly, they refer to this as
the “HMAC Construction”. It’s not HMAC

[CDMPO5] prove H2(0? || M) indifferentiable from a RO,
when H is Merkle-Damgard-style hash function (e.g., SHA-256)

[K10] suggests that the [CDMPO5] proof extends to the real HMAC



Summary of our results

Uncover that HMAC has weak key pairs
(1) Colliding key pairs K#K s.t. HMAC(K,M) = HMAC(K’,M)

(2) Ambiguous key pairs  no inner/outer H domain separation
KzK st K. =K, K’ = Kyt

H?and HMAC w/ ambiguous key pairs have similar issues

* At best weak concrete security from indifferentiability
e Upper bound proof that H? is “weakly” indifferentiable
 Example (vulnerable) setting: mutual proofs of work

Avoid weak key pairs in HMAC, get strong indifferentiability



ICDMPOS5]: formalize “behave like a RO” via
indifferentiability framework of [MIRHO4]

Indifferentiability from a RO

Real H2 — H
) )
D

L o1

H, RO both random functions

RO

<€— Sim |deal

t

t
D

s o1

Indifferentiable if exists efficient Sim s.t. for all efficient D

Advindifi(H2 D Sim) =

Pr[ Real(D) =>1]—Pr[ldeal(D)=>1]<¢



ICDMPOS5]: formalize “behave like a RO” via
indifferentiability framework of [MIRHO4]

Indifferentiability from a RO

Real |HMAC—> H i <— Sim Ideal
Query K,M
D (D or Sim
chooses K)

|—> 0/1 ! |—> 0/1

H, RO both random functions

Indifferentiable if exists efficient Sim s.t. for all efficient D
Advindiff(H2 D Sim) = Pr[Real(D)=>1]-Pr[ldeal(D)=>1]<¢
Advindif(HMAC,D,Sim) = Pr[Real(D)=>1]-Pr[ldeal(D)=>1]<¢



ICDMPOS5]: formalize “behave like a RO” via
indifferentiability framework of [MIRHO4]

(Conjectured) HMAC
indifferentiability

| > Applications proven

+ MRHO4] secure using HMAC
[BRT12],.[K10],[RY1.0] p.roofs composition (H still ideal)
of security for applications theorem
using RO
5 Rules out attacks that
Limitati abuse structure of HMAC
IMIitations:

 [RSS11]: composition only applies to “single-stage” games
* Concrete security of indifferentiability important!

Normal indifferentiability: Sim makes O(q) queries
Weak indifferentiability: Sim makes >0(q) queries



A closer look at HMAC
Let H:{0,1}* ->{0,1}" be parameterized by a block length d < n

HMAC(K,M):
M — H H = HMACKM) £ 1) > d then K < H(K)

[ [ else K’ <- K

K"’ <- K || 01Kl

K., <- K’ @ipad

K, <- K" ® opad

Return H( K, || H(K,, || M) )

ipad # opad fixed strings



A closer look at HMAC
Let H:{0,1}* ->{0,1}" be parameterized by a block length d < n

HMAC(K,M):

If |[K| >dthen K’ <-H(K)
else K’ <- K

K” <- K’ || 01Kl

K., <- K’ @ipad

K., <- K” ® opad

Return H( K, || H(K,, || M) )

ipad # opad fixed strings



A closer look at HMAC

Let H:{0,1}* ->{0,1}" be parameterized by a block length d < n

1) Colliding key pairs

Any K1 # K2 such that
HMAC(K1,M) = HMAC(K2,M)

Example: K2 = K1||0 |K1|<d

Simple distinguisher breaking
indifferentiability with 2 queries

Possible security issue anywhere
variable-length keys used

No colliding keys if use
fixed-length keys (and H is CR)

HMAC(K,M):

If |[K| >dthen K’ <-H(K)
else K’ <- K

K” <- K || 09-IK1

K., <- K’ @ipad

K, <- K" ® opad

Return H( K, || H(K,, || M) )

ipad # opad fixed strings

D
Query left oracle on (K,M) to get Y
Query left oracle on (K||0,M) to get Y’
IfY=Y thenretl
ret 0



A closer look at HMAC
Let H:{0,1}* ->{0,1}" be parameterized by a block length d < n

1) Colliding key pairs HMAC(K,M):
Any K1 # K2 such that It K] >dthen K'<-H(K)
HMAC(KL,M) = HMAC(K2,M) | ElseKi<-K
K"’ <- K" || 0 I€]
Example: K2 = K1||0 |K1|<d K. <-
K. .<-

out

Return H( K, || H(K,, || M) )

ipad # opad fixed strings
Any K1 # K2 such that

I<]'in = |<2out |<2in = K:I'out
Example: K2 = K1 ®ipad ®opad |K1|=|K2|=d

H(K1,, || X)=H(K2,,|| X)  Noinner/outer H
H(K2,, || X)=H(K1,,]|| X) domain separation.

For all X:

out |



Summary of HMAC indifferentiability

Key space includes Indifferentiable?

Colliding key pairs No

Ambiguous key pairs

(no colliding key pairs) At most weak @
Keys K of fixed length

IK| < d-1 Yes

- Avoids both kinds of weak key pairs:

Indifferentiability upper bound (simplified)

For HMAC with restricted keys, exists Sim such that for any D
Advindf(HMAC,D,Sim) < O(g?/2")

Sim makes O(q) queries



Lack of inner/outer domain separation

M= H HHFHMAH FH20w)

) Output of H? “leaks” an internal
M" = H(|V|) value for another hash computation

* Prior indifferentiable constructions avoid leaking
intermediate values
e Extension attacks abused such leaks



Indifferentiability lower and upper bounds (simplified)

Real H2 —> H i RO [€— Sim Ideal
) t i ) )
D i D
I—> 0/1 M:c]kes O(q) ‘_\ i

ueries
Lower bound: d

Must make ~O(q?)
queries to succeed

We give D making q, left queries and g right queries such that

for any Sim making q, queries:

Advndfi(H2,D,Sim) > 1 -q./ (g, 9g)

Upper bound:

We give Sim such that for any D making g queries

Advindifi(H2 D Sim) < g2/ 2"



Indifferentiability lower and upper bounds (simplified)

Real HMAC — H RO €— Sim |deal

r 1 t 1
D D

I—> 0/1 Makes O(q) ‘_\ o

Must make ~O(q?)
queries to succeed

ueries
Lower bound: d

We give D, making q, left queries and q right queries including
, such that for any Sim making q. queries:

Advirdf(HMAC,D,Sim) > 1 -q./ (9, qz)

Upper bound: 7?7?77
Indifferentiability for (but no colliding keys)
probably holds with Sim making O(g? )queries. We don’t have a proof.




Does g2 versus q really matter?

In paper we provide an example:
mutual proofs of work protocol

vulnerable using H?
or HMAC with secure using RO

ambiguous key pairs



Vulnerabilities in practice?

\
0$. TLS handshake: ®0o
TLS Connection HMAC( ng ) cce ) &= é {5 https://www.google.com/search?q=hrr

€ >
TLS record layer:

O
O™ HMAC(K,,,, Ctxt) Google  hmac

-" hmac - Google Search

IPSec tunnel

i ] <€ >
Disk encryption KEv2 (HKDF): —
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ok Most applications already
avoid weak key pairs



Discussion

Results extend to when H is an iterative hash function
(e.g., SHA-1, SHA-256, ...)

In theory, we can fix H2 and HMAC, but deployment
would be a ... hurdle



Summary of our results

Uncover that HMAC has weak key pairs
(1) Colliding key pairs K#K s.t. HMAC(K,M) = HMAC(K’,M)

(2) Ambiguous key pairs  no inner/outer H domain separation
KzK st K. =K, K’ = Kyt

H?and HMAC w/ ambiguous key pairs have similar issues

* At best weak concrete security from indifferentiability
e Upper bound proof that H? is “weakly” indifferentiable
 Example (vulnerable) setting: mutual proofs of work

Avoid weak key pairs in HMAC, get strong indifferentiability



