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Cryptography today is (mainly) based on computational 

assumptions. 

 

We wish instead to base cryptography on a  

physical assumption. 

Presence of channel noise 



Noisy channel assumption has been used previously to 

achieve oblivious transfer, commitments [CK88,C97]  

 

But we return to an older and more basic setting … 



Wyner’s Wiretap Model [W75,CK78] 

ChR 

ChA 𝑍(𝑀) 

𝐃𝐄𝐂 𝑀′ 𝐄𝐍𝐂 𝑀 
𝐶 

Goals: Message privacy + correctness  

 

Assumption: ChA is “noisier” than ChR 

 

Encryption is keyless 

 

Security is information-theoretic 

 

Additional goal: Maximize rate 𝑅 = |𝑀|/|𝐶| 

𝐶′ 



Channels 

𝑥1 , 𝑦4, … Ch 

A channel is a randomized map Ch: 0,1 → 0,1  

We extend the domain of Ch to {0,1}∗ via  

Ch 𝑥1𝑥2 …𝑥𝑛 = Ch 𝑥1 Ch 𝑥2 …Ch 𝑥𝑛  

𝑦1 = Ch(𝑥1) 

𝑦2 = Ch(𝑥2) 

𝑦3 = Ch(𝑥3) 

𝑦4 = Ch(𝑥4) 

Ch 𝑏 = 𝑏 

… , 𝑥4, 𝑥2, 𝑥3, 𝑦1 , 𝑦2 , 𝑦3 

Clear channel: 

BSC𝑝 𝑏 =  
𝑏 with prob. 1 − 𝑝

1 − 𝑏 with prob. 𝑝
 

Binary symmetric channel with error probability 𝒑: 



Wyner’s Wiretap Model – More concretely 

BSC𝑝 

BSC𝑞 𝑍(𝑀) 

𝐃𝐄𝐂 𝑀′ 𝐄𝐍𝐂 𝑀 
𝐶 

Assumption: 𝑝 <  𝑞 ≤ 1 2  



Wiretap channel – Realization 

Increasing practical interest: Physical-layer security 

010110… . 

Very short distance Very low power 

Large distance 

Degraded signal 

e.g. credit card # 



Wiretap Channel – Previous work 

Two major drawbacks: 

1. Improper privacy notions 

Entropy-based notions 

Only consider random messages 

2. No polynomial-time schemes with optimal rate 

Non-explicit decryption algorithms 

Weaker security 

35 years of previous work:  

Hundreds of papers/books on wiretap 

security within the information theory & 

coding community 

This work: We fill both gaps 



Our contributions 

1. New security notions for the wiretap channel model: 

 Semantic security, distinguishing security 

following [GM82] 

 Mutual-information security 

 Equivalence among the three 

2. Polynomial-time encryption scheme: 

 Semantically secure 

 Optimal rate  



Outline 

1. Security notions 

2. Polynomial-time scheme 



Prior work – Mutual-information security 

BSC𝑝 

BSC𝑞 𝑍(𝑀) 

𝐃𝐄𝐂 𝑀′ 𝐄𝐍𝐂 𝑀 
𝐶 

Uniformly distributed! 

Definition: 𝐈 𝑀; 𝑍(𝑀) = 𝐇 𝑀 − 𝐇 𝑀|𝑍(𝑀)  

Random Mutual-Information Security (MIS-R): 

𝐈 𝑀; 𝑍(𝑀) = 𝐧𝐞𝐠𝐥 𝐇 𝑀 =  P𝑀(𝑚) ∙ log 1 P𝑀(𝑚) 

𝑚

 

𝐇 𝑀|𝑍(𝑀) = 𝐇 𝑀 𝑍(𝑀) − 𝐇 𝑍(𝑀)  



Critique – Random messages 

BSC𝑝 

BSC𝑞 𝑍(𝑀) 

𝐃𝐄𝐂 𝑀′ 𝐄𝐍𝐂 𝑀 
𝐶 

We want security for arbitrary message distributions, 

following [GM82]! 

Common misconception: c.f. e.g. [CDS11]  
“[…] the particular choice of the distribution on 𝑀 as a uniformly random 

sequence will cause no loss of generality. […] the transmitter can use a 

suitable source-coding scheme to compress the source to its entropy prior to 

the transmission, and ensure that from the intruder’s point of view, 𝑀 is 

uniformly distributed.”  

Wrong! No universal (source-independent) 

compression algorithm exists! 

Uniformly distributed! 



Mutual-information security, revisited 

New: Mutual-Information Security (MIS) 

max
P𝑀

𝐈 𝑀; 𝑍(𝑀)  = 𝐧𝐞𝐠𝐥 

Random Mutual-Information Security (MIS-R) 

𝐈 𝑀; 𝑍(𝑀) = 𝐧𝐞𝐠𝐥 

Maximize over all message distributions 

Critique: Mutual information is hard to work with / interpret! 



Semantic security 

Semantic Security (SS) 

max
𝑓,P𝑀

 max
𝑨

Pr [𝑨(𝑍(𝑀)) = 𝑓(𝑀)]

− max
𝑺

Pr [𝑺 = 𝑓(𝑀)] = 𝐧𝐞𝐠𝐥 

Maximize over all functions + message distributions 

BSC𝑞 
𝑍(𝑀) 

𝐄𝐍𝐂 𝑀 

𝑓 
𝑌 𝑓(𝑀) 

= 

0/1 

𝑨 𝑀 𝑓 
𝑌 𝑓(𝑀) 

= 

0/1 

𝑺 



Distinguishing security 

Distinguishing Security (DS) 

max
𝑨,𝑀0,𝑀1

Pr[𝑨 𝑀0, 𝑀1, 𝑍 𝑀B = B] = 1/2 + 𝐧𝐞𝐠𝐥 

Uniform random bit 𝐵 

Fact: 

max
𝐴,𝑀0,𝑀1

Pr[A 𝑀0, 𝑀1, 𝑍 𝑀B = B] =
1

2
+ 𝐧𝐞𝐠𝐥

⇔ max
𝑀0,𝑀1

𝐒𝐃 𝑍 𝑀0 ; 𝑍 𝑀1 = 𝐧𝐞𝐠𝐥. 

𝐒𝐃 𝑋; 𝑌 =
1

2
 P𝑋 𝑣 − P𝑌 𝑣

𝑣

 



Relations 

MIS DS 

SS MIS-R 

Theorem. MIS, DS, SS are equivalent.  



Outline 

1. Security notions 

2. Polynomial-time scheme 



Polynomial-time scheme 

BSC𝑝 

BSC𝑞 𝑍(𝑀) 

𝐃𝐄𝐂 𝑀′ 𝐄𝐍𝐂 𝑀 
𝐶 

Goal: Polynomial-time 𝐄𝐍𝐂 and 𝐃𝐄𝐂 which satisfy:   

1) Correctness: Pr 𝑀 ≠ 𝑀′ = 𝐧𝐞𝐠𝐥 
2) Semantic security 

3) Optimal rate 

 We observe that fuzzy extractors of [DORS08] can be 

used to achieve 1 + 2. (Also: [M92,…]) 

 [HM10,MV11] Constructions achieving 1 + 3 or 2 + 3. 

This work: First polynomial-time scheme achieving 1 + 2 + 3 



What is the optimal rate? 

BSC𝑝 

BSC𝑞 𝑍(𝑀) 

𝐃𝐄𝐂 𝑀′ 𝐄𝐍𝐂 𝑀 
𝐶 

Definition: Rate 𝑅 = 𝑀 /|𝐶| 
 

Previous work: [L77] No MIS-R secure scheme can 

have rate higher than ℎ 𝑞 −  ℎ(𝑝) − 𝑜(1). 
 

Our scheme: Rate ℎ 𝑞 −  ℎ 𝑝 − 𝑜(1) 
 

Hence, ℎ 𝑞 −  ℎ(𝑝) − 𝑜(1) is the optimal rate for all 

security notions! 
 

ℎ 𝑥 = −𝑥 log 𝑥 − (1 − 𝑥) log(1 − 𝑥) 



Our encryption scheme 

𝑀 

𝑚 bits 

𝑋 

𝑆 ≠ 0𝑘 

𝑘 bits 

𝐄 

𝐶 

𝑛 bits 

𝐄𝐍𝐂𝑆(𝑀) 𝑘 − 𝑚 bits 

GF 2𝑘  multiplication 

Poly-time + injective 

+ linear  

𝑚 ≤ 𝑘 − 1 − ℎ 𝑞 + 𝑜(1) 𝑛 

Public seed 



Our encryption scheme – Security 

Theorem. 𝐄𝐍𝐂 is semantically secure.   

Challenge:  

Ciphertext distribution 

depends on combinatorial 

properties of E.  

Two steps: 

1. Reduce semantic security to random-message security. 

2. Prove random-message security. 

𝑀 

𝑋 

𝑆 ≠ 0  

𝐄 

𝐶 



Our encryption scheme – Decryptability and rate 

𝑀 

𝑋 

𝑆 ≠ 0  

𝐄 

𝐶 

𝐶′ 

𝐃 

𝑋′ 

𝑆−1 

𝑀′ 

𝐄𝐍𝐂𝑆(𝑀): 𝐃𝐄𝐂𝑆(𝐶′): 

Observation. If (𝐄, 𝐃) are encoder/decoder of ECC for 

BSC𝑝, then correctness holds.   

Optimal choice: Concatenated codes [F66],  

polar codes [A09]: 𝑘 = 1 − ℎ 𝑝 − 𝑜(1) 𝑛 

𝑘 − 𝑚 𝑚 

𝑛 

𝑚 = 𝑘 − 1 − ℎ 𝑞 + 𝑜(1) 𝑛 

Optimal rate: 
𝑚

𝑛
= ℎ 𝑞 − ℎ 𝑝 − 𝑜(1) 



Concluding remarks 

Summary: 

 New equivalent security notions for the wiretap setting: 

DS, SS, MIS. 

 First polynomial-time scheme achieving these security 

notions with optimal rate. 

 Our scheme is simple, modular, and efficient. 
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Additional remarks: 

 We provide a general and concrete treatment. 

 Scheme can be used on larger set of channels. 



Concluding remarks 

Summary: 

 New equivalent security notions for the wiretap setting: 

DS, SS, MIS. 

 First polynomial-time scheme achieving these security 

notions with optimal rate. 

 Our scheme is simple, modular, and efficient. 

Additional remarks: 

 We provide a general and concrete treatment. 

 Scheme can be used on larger set of channels. 

Thank you! 


