Functional Encryption with Bounded Collusions via Multi-Party Computation

Sergey Gorbunov -- {U of Toronto}
Vinod Vaikuntanathan -- {U of Toronto}
Hoeteck Wee -- {George Washington U}
Public Key Encryption

Bob

Only Bob can decrypt and compute on m!

Alice

CT = Enc(PK, m)

Charlie

PK

SK
Public Key Encryption

How can we:
- Allow Charlie to learn a function C of m?
- Ensure Charlie doesn’t learn more than $C(m)$?
- Without asking Bob to do the work (outsourcing)
- And without asking Bob to be online (availability)

$$CT = Enc(PK, m)$$
Public Key Encryption

How can we:

- Allow Charlie to learn a function C of m?
- Ensure Charlie doesn’t learn more than $C(m)$?
- Without asking Bob to do the work (outsourcing)
- And without asking Bob to be online (availability)

$CT = Enc(PK, m)$
Public Key Encryption

How can we:
- Allow Charlie to learn a function C of m?
- Ensure Charlie doesn’t learn more than $C(m)$?
- Without asking Bob to do the work (outsourcing)
- And without asking Bob to be online (availability)

$CT = Enc(PK, m)$

Alice

Bob

Charlie

SK

PK
Fully Homomorphic Encryption [Gentry 09]

How can we:
- Allow Charlie to learn a function C of m?
- ensure Charlie doesn’t learn more than $C(m)$?
- without asking Bob to do the work (outsourcing)
- and without asking Bob to be online (availability)

$CT = Enc(PK, m)$

$H. Eval(C, CT) = Enc(C(m))$
Functional Encryption \cite{Boneh11, O'Neill10}

Allow Charlie to learn a function of M!
Functional Encryption [Boneh, Sahai, Waters 11] [O'Neill 10]

Allow Charlie to learn a function of M!

...Let C be a family of circuits and M be a message space

Bob

MSK

Alice

MPK

Charlie

C

GVW12

FE with Bounded Collusions via MPC
Functional Encryption \([\text{BSW'11, O'N10}]\)

Allow Charlie to learn a function of \(M\!

...Let \(C\) be a family of circuits and \(M\) be a message space

\[
SK = \text{Keygen}(\text{MSK}, C)
\]

(Charlie no longer needs to communicate to Bob)
Functional Encryption

[BSW’11, O’N10]

Allow Charlie to learn a function of M!

...Let C be a family of circuits and M be a message space

Bob

Alice

Charlie

MSK

MPK

CT = Enc(MPK, m)

SK = Keygen(MSK, C)

Dec(SK, CT) = C(m)

GVW12
Functional Encryption
[BSW’11, O’N10]

...Let C be a family of circuits and M be a message space.

Security:

Adv should not learn anything about m, except $C(m)$.

$SK = Keygen(MSK, C)$

$CT = Enc(MPK, m)$

$Dec(SK, CT) = C(m)$
$SK = \text{Keygen}(MSK, C)$

$C = \text{circuit opening urgent emails}$

$CT = \text{Enc}(MPK, email)$

$Dec(SK, CT) = \text{email if urgent} \downarrow \text{otherwise}$
Special Cases of FE

- Identity-Based Encryption [Sha84, BF01, Coc01, BW06]

\[C_{id}(id', \mu) = \mu \text{ if } id = id' \]
\[\perp \text{ otherwise} \]

- Fuzzy IBE [SW05]
- Attribute-Based Encryption [GPSW06, LOSTW10]
- Inner Product Predicate Encryption [KSW08, LOSTW10]
Can we construct functional encryption for all circuits?
Can we construct functional encryption for all circuits?

Yes we can!

with a small catch ...
Functional Encryption

Allow Charlie to learn q functions of M (q is fixed before setup)

$CT = Enc(MPK, m)$

$SK_1, ..., SK_q$

$SK_i = Keygen(MSK, C_i)$

Security against q – Bounded Collusions:
Adv should not learn anything about m, except $C_1(m), ..., C_q(m)$

$Dec(SK_1, CT) = C_1(m), ..., C_q(m)$
Functional Encryption

q-collusion security

\[SK_1 = \text{Keygen}(MSK, C_1) \]

\[SK_q = \text{Keygen}(MSK, C_q) \]

\[SK_n = \text{Keygen}(MSK, C_n) \]

Colluding Advs shouldn’t learn anything about \(m \), except: \(C_1(m), \ldots, C_q(m) \)
Previous Work

q-collusion security

- Key-insulated public key cryptosystems
 [Dodis, Katz, Xu, Yung 02]
- Bounded CCA2
 [Cramer, Hanaoka, Hofheinz, Imai, Kiltz, Pass, Shelat, Vaikuntanathan 07]
- Bounded-collusion IBE
 [Goldwasser, Lewko, Wilson 12]
Our Result

Theorem: There exists a q-bounded non-adaptive simulation-secure FE scheme for all poly-size circuits, assuming:

- CPA-secure Public-key Encryption and
- PRGs computable in low-depth
Our Result

Theorem: There exists a q-bounded non-adaptive simulation-secure FE scheme for all poly-size circuits, assuming:
- CPA-secure Public-key Encryption and
- PRGs computable in low-depth

- Extends to adaptive for bounded # of messages
Our Result

Theorem: There exists a q-bounded non-adaptive simulation-secure FE scheme for all poly-size circuits, assuming:

- CPA-secure Public-key Encryption and
- PRGs computable in low-depth
- factoring
- discrete logarithm
- lattice problems
Our Result

Theorem: There exists a q-bounded non-adaptive simulation-secure **public index predicate encryption** scheme for all poly-size circuits, assuming:

- CPA-secure Public-key Encryption and
- PRGs computable in low depth
Our Result

Theorem: There exists a \textbf{q-bounded} non-adaptive simulation-secure FE scheme for all poly-size circuits, assuming:

- CPA-secure Public-key Encryption and
- PRGs computable in low-depth

Remark 1:

[Thm: Agrawal, G, Vaikuntanathan, Wee 12]

For unbounded collusions, it is impossible to achieve non-adaptive simulation secure FE for all circuits.
Our Result

Theorem: There exists a q-bounded non-adaptive simulation-secure FE scheme for all poly-size circuits, assuming:
- CPA-secure Public-key Encryption and
- PRGs computable in low-depth

Remark 2:

[Thm: Boneh, Sahai, Waters 11]
It is impossible to achieve adaptive simulation secure FE for all circuits.
(many messages, 1 SK)
Theorem: There exists a q-bounded non-adaptive *simulation-secure* FE scheme for all poly-size circuits, assuming:

- CPA-secure Public-key Encryption and
- PRGs computable in low-depth

Remark 3:

Simulation Security \rightarrow IND security
Roadmap

1-FE for arbitrary circuits [Sahai, Seyalioglu 10]

Using MPC
[Ben-Or, Goldwasser, Wigderson 88]

q-FE for degree-d circuits

FE Bootstrapping Theorem: Using Randomized Encodings
[Applebaum, Ishai, Kushilevitz 05]
[Yao 86]

q-FE for arbitrary circuits
Roadmap

1-FE for arbitrary circuits [Sahai, Seyalioglu 10]

Using MPC
[Ben-Or, Goldwasser, Wigderson 88]

q-FE for degree-d circuits

Class of functions:

- Computes bounded degree polynomial

- For all $C \in C$, $C(\cdot)$ is l-variate polynomial over \mathbb{F} of degree d
1-FE for all circuits

[Ciphertext CT]: A universal garbled circuit encoding m [Yao 82]

[Secret key SK^C]: Set of input labels

It is correct but **NOT** secure for two sets of input labels! (i.e. **insecure for $q=2$**)

[Sahai, Seyalioglu 10]
q-bounded Collusions FE

C(•) is a degree d polynomial

Shamir's SS [Shamir 79]

Important property: Given two shares \(s_1(i) \) and \(s_2(i) \), we can perform computation over the shares! [Ben-Or, Goldwasser, Wigderson 88]

\[
s_1(i) + s_2(i) = (s_1 + s_2)(i) \quad \text{(additive homomorphism)}
\]

\[
s_1(i) \cdot s_2(i) = (s_1 \cdot s_2)(i) \quad \text{(multiplicative homomorphism)}
\]
q-bounded Collusions FE

C(•) is a degree d polynomial

Shamir’s SS [Shamir 79]

Important property: Given two shares $s_1(i)$ and $s_2(i)$, we can perform computation over the shares! [Ben-Or, Goldwasser, Wigderson 88]

\[s_1(i) + s_2(i) = (s_1 + s_2)(i) \]
(additive homomorphism)

\[s_1(i) \times s_2(i) = (s_1 \times s_2)(i) \]
(multiplicative homomorphism)

Catch:
Degree of the underlying polynomial increases with each multiplication!
q-bounded Collusions FE

\[C(\bullet) \text{ is a degree } d \text{ polynomial} \]

Parameters: \(N = N(d, q), t = t(q) \), \(1\text{-FE: (Setup}^1, \text{Keygen}^1, \text{Enc}^1, \text{Dec}^1) \)

Setup: Run Setup\(^1\) \(N \) times:

\[
\begin{array}{cccccc}
\text{MPK}_1 & \text{MPK}_2 & \text{MPK}_3 & \ldots & \text{MPK}_{N-1} & \text{MPK}_N \\
\text{MSK}_1 & \text{MSK}_2 & \text{MSK}_3 & \ldots & \text{MSK}_{N-1} & \text{MSK}_N \\
\end{array}
\]
q-bounded Collusions FE

\(C(\bullet) \) is a degree d polynomial

Parameters: \(N = N(d, q), t = t(q) \), 1-FE: (Setup\(^1\), Keygen\(^1\), Enc\(^1\), Dec\(^1\))

Setup: Run Setup\(^1\) \(N \) times:

Random subset \(S \) of secret keys \(\{MSK_i\} \) is chosen

Run Keygen\(^1\) on \(C \) for all \(MSK_i \) in \(S \)
q-bounded Collusions FE

\(C(\bullet) \) is a degree d polynomial

Parameters: \(N = N(d, q), t = t(q) \), 1-FE: (Setup\(^1\), Keygen\(^1\), Enc\(^1\), Dec\(^1\))

Setup: Run Setup\(^1\) N times:

\[
\text{Setup: Run Setup}\(^1\) N times:
\]

\[
\text{Keygen}_{\text{MSK}}(C): \quad sK_1^C \quad SK_2^C \quad \ldots \quad SK_{N-1}^C
\]

\[
\text{Enc}_{\text{MPK}}(m): \quad m_1 \quad m_2 \quad m_3 \quad \ldots \quad m_{N-1} \quad m_N
\]

\[
\downarrow \text{MPK}_1 \quad \downarrow \text{MPK}_2 \quad \downarrow \text{MPK}_3 \quad \ldots \quad \downarrow \text{MPK}_{N-1} \quad \downarrow \text{MPK}_N
\]

\[
\downarrow \text{CT}_1 \quad \downarrow \text{CT}_2 \quad \downarrow \text{CT}_3 \quad \ldots \quad \downarrow \text{CT}_{N-1} \quad \downarrow \text{CT}_N
\]

Share \(m \rightarrow (m_1, \ldots, m_N) \) using degree \(t \) polynomial

GVW12

FE with Bounded Collusions via MPC
q-bounded Collusions FE

$C(\bullet)$ is a degree d polynomial

Parameters: $N = N(d, q), t = t(q)$, 1-FE: (Setup¹, Keygen¹, Enc¹, Dec¹)

Setup: Run Setup¹ N times:

Keygenₘₛₘₖ(C):

Encₘₚₖ(m):

Dec(CT,SKₖ):

$C(m_i) = \text{Dec}^1(SK_i, CT_i)$

GVW12
q-bounded Collusions FE

C(•) is a degree d polynomial

Parameters: $N = N(d, q)$

Setup: Run Setup1 N times:

- **Keygen**1 MSK(C):
 - SK1_k

- **Enc**1 MPK(m):
 - CT$_1$
 - CT$_2$
 - CT$_{N-1}$
 - CT$_N$

- **Dec**(CT, SKC):
 - C(m_1)
 - C(m_2)
 - C(m_{N-1})

C(m_2) is a share of C(m) -- by Homomorphism of Shamir’s Secret Sharing

Keygen1, Enc1, Dec1
q-bounded Collusions FE

$C(\bullet)$ is a degree d polynomial

Parameters: $N = N(d, q), t = t(q)$, 1-FE: $(\text{Setup}^1, \text{Keygen}^1, \text{Enc}^1, \text{Dec}^1)$

Setup: Run Setup^1 N times:

- **Keygen**$_{\text{MSK}}(C)$:
 - SK_1^C
 - SK_2^C
 - SK_{N-1}^C
 - SK_N^C

- **Enc**$_{\text{MPK}}(m)$:
 - m_1
 - m_2
 - m_{N-1}
 - m_N

- **Dec**(CT, SKC):
 - $C(m_1)$
 - $C(m_2)$
 - $C(m_{N-1})$
 - Secret Sharing of $C(m)$!
q-bounded Collusions FE

\(C(\bullet) \) is a degree d polynomial

Parameters: \(N = N(d, q), t = t(q) \), 1-FE: (Setup\(^1\), Keygen\(^1\), Enc\(^1\), Dec\(^1\))

Setup: Run Setup\(^1\) N times:

\[\text{Setup}: \text{Run Setup}\(^1\) N \text{ times:} \]

\[\text{Keygen}_{\text{MSK}}(C): \]

\[\text{Enc}_{\text{MPK}}(m): \]

\[\text{Dec}(\text{CT,SK}^C): \]

Reconstruct \(C(m) \) from the shares

Diagram:

- MPK\(_1\), MSK\(_1\) → SK\(_1^C\)
- MPK\(_2\), MSK\(_2\) → SK\(_2^C\)
- MPK\(_3\), MSK\(_3\) → SK\(_3^C\)
- \(\ldots \)
- MPK\(_{N-1}\), MSK\(_{N-1}\) → SK\(_{N-1}^C\)
- MPK\(_N\), MSK\(_N\) → SK\(_N^C\)

- \(m_1 \) → CT\(_1\)
- \(m_2 \) → CT\(_2\)
- \(m_3 \) → CT\(_3\)
- \(\ldots \)
- \(m_{N-1} \) → CT\(_{N-1}\)
- \(m_N \) → CT\(_N\)

\[\text{C}(m_1) \rightarrow \text{C}(m_2) \rightarrow \text{C}(m_{N-1}) \]

GVW12

FE with Bounded Collusions via MPC
q-bounded Collusions FE

$C(\bullet)$ is a degree d polynomial

Parameters: $N = N(d, q)$,

Setup: Run Setup1 N times:

- Setup: Run Setup1 N times:
 - $\text{Enc}_{MPK}(m)$:
 - $CT_{1} \rightarrow C(m_{1})$
 - $CT_{2} \rightarrow C(m_{2})$
 - $CT_{3} \rightarrow C(m_{3})$
 - \ldots
 - $CT_{N-1} \rightarrow C(m_{N-1})$
 - $CT_{N} \rightarrow C(m_{N})$

- $\text{Dec}(CT, SK^{C})$:
 - $C(m_{1}) \rightarrow C(m_{1})$
 - $C(m_{2}) \rightarrow C(m_{2})$
 - \ldots
 - $C(m_{N-1}) \rightarrow C(m_{N-1})$

- $\text{Keygen}_{MSK}(C)$:
 - $SK_{1}^{C} \rightarrow SK_{1}^{C}$
 - $SK_{2}^{C} \rightarrow SK_{2}^{C}$
 - \ldots
 - $SK_{N-1}^{C} \rightarrow SK_{N-1}^{C}$
 - $SK_{N}^{C} \rightarrow SK_{N}^{C}$

Correctness:

- $m_{i} = s(i)$, where $s()$ is degree t,
- $C(\bullet)$ is degree d,
- $C(s(i))$ is degree dt polynomial,
- Give $dt+1$ SK’s

Reconstruct $C(m)$ from the shares

GVW12
q-bounded Collusions FE

\(C(\bullet) \) is a degree d polynomial

Parameters: \(N = N(d, q), t = t(q) \), 1-FE: (Setup\(^1\), Keygen\(^1\), Enc\(^1\), Dec\(^1\))

Setup: Run Setup\(^1\) \(N \) times:

Keygen\(_{MSK}(C_1)\): \(SK_1^{C_1} \)

Keygen\(_{MSK}(C_2)\):

Enc\(_{MPK}(m)\): \(m_1 \rightarrow CT_1 \), \(m_2 \rightarrow CT_2 \), \(m_3 \rightarrow CT_3 \), ... \(m_{N-1} \rightarrow CT_{N-1} \), \(m_N \rightarrow CT_N \)

Dec(CT,SK\(_C\)): ...
q-bounded Collusions FE

C(•) is a degree d polynomial

Parameters: \(N = N(d, q) \), \(t = t(q) \), 1-FE: (Setup\(^1\), Keygen\(^1\), Enc\(^1\), Dec\(^1\))

Setup: Run Setup\(^1\) \(N \) times:

- Keygen\(_{\text{MSK}}(C_1)\): \(\text{sk}^c_1 \) to \(\text{SK}^{c_1}_2 \) to \(\text{SK}^{c_1}_{N-1} \) to \(\text{SK}^{c_1}_N \)
- Keygen\(_{\text{MSK}}(C_2)\):
- Enc\(_{\text{MPK}}(m)\): \(m_1 \) to \(\text{CT}_1 \) to \(\text{CT}_2 \) to \(\cdots \) to \(\text{CT}_{N-1} \) to \(\text{CT}_N \)
- Dec(CT,SK\(_C^C\)): \(\text{c}_1(m_1) \) to \(\text{c}_1(m_2) \) to \(\text{c}_2(m_2) \) to \(\cdots \) to \(\text{c}_1(m_{N-1}) \) to \(\text{c}_2(m_{N-1}) \)
q-bounded Collusions FE

$C(\bullet)$ is a degree d polynomial

Parameters: $N = N(d, q), t = t(q)$, 1-FE:

Setup: Run Setup1 N times:

Keygen$_{MSK}(C_1)$: $SK^1_{C_1}$

Keygen$_{MSK}(C_2)$: $SK^2_{C_2}$

Enc$_{MPK}(m)$: $m_1 \rightarrow CT_1$, $m_2 \rightarrow CT_2$, $m_3 \rightarrow CT_3$, ..., $m_{N-1} \rightarrow CT_{N-1}$, $m_N \rightarrow CT_N$

Dec(CT, SK^C): $C_1(m_1)$, $C_2(m_2)$, $C_2(m_3)$, ..., $C_1(m_{N-1})$, $C_2(m_{N-1})$

Security (intuition): We are OK, given that the Decryptor learns $\leq t$ shares.
q-bounded Collusions FE

$C(\bullet)$ is a degree d polynomial

Technical Problem 1:

- Adversary learns shares $C(m_i)$, so the simulator must be able to simulate them. However, these are not random shares, so unclear how to simulate. (known problem in BGW)
q-bounded Collusions FE
\[C(\bullet) \text{ is a degree } d \text{ polynomial} \]

Technical Problem 1:
- Adversary learns shares \(C(m_i) \), so the simulator must be able to simulate them. However, these are not random shares, so unclear how to simulate. (known problem in BGW)

Solution
- Randomize each share \(C(m_i) \) by adding random share \(r_i \) of 0
\[
C'(m_i||r_i) = C(m_i) + r_i
\]
q-bounded Collusions FE

$C(\bullet)$ is a degree d polynomial

Technical Problem 1:
- Adversary learns shares $C(m_i)$, so the simulator must be able to simulate them. However, these are not random shares, so unclear how to simulate. (known problem in BGW)

Solution
- Randomize each share $C(m_i)$ by adding random share r_i of 0

 $C'(m_i||r_i) = C(m_i) + r_i$

Technical Problem 2:
- Adding random shares of 0 of the same polynomial creates correlation between shares of $C_1(m) \ldots C_q(m)$
q-bounded Collusions FE
C(•) is a degree d polynomial

Technical Problem 1:
- Adversary learns shares $C(m_i)$, so the simulator must be able to simulate them. However, these are not random shares, so unclear how to simulate. (known problem in BGW)

Solution
- Randomize each share $C(m_i)$ by adding random share r_i of 0
 $$C'(m_i||r_i) = C(m_i) + r_i$$

Technical Problem 2:
- Adding random shares of 0 of the same polynomial creates correlation between shares of $C_1(m) ... C_q(m)$

Solution
- Add a q-wise independent random shares of 0
 $$C'_w(m||\vec{r}_i) = C(m_i) + \sum_{j \in w} r_i [j]$$
q-bounded Collusions FE

1-FE for arbitrary circuits [SS’10, Yao’86]

\[\text{Using MPC [BGW’88]} \]

\[\text{DONE!} \]

q-FE for degree-d circuits

\[\text{FE Bootstrapping Theorem: Using Randomized Encodings} \]

\[\text{[AIK’05,Yao’86]} \]

q-FE for arbitrary circuits
q-bounded Collusions FE

q-FE for degree-d circuits

FE Bootstrapping Theorem:
Using Randomized Encodings

[Applebaum, Ishai, Kushilevitz 05]
[Yao 86]

q-FE for arbitrary circuits

Idea: A function computing a randomized encoding for C is of low degree. (assuming low degree PRG)
[AIK05]
q-bounded Collusions FE

1-FE for arbitrary circuits \([SS’10, Yao’86]\)

q-FE for degree-\(d\) circuits

Using MPC \([BGW’88]\)

FE Bootstrapping Theorem: Using Randomized Encodings

\([AIK’05, Yao’86]\)

q-FE for arbitrary circuits

\(\text{DONE!}\)
q-bounded Collusions FE

1-FE for arbitrary circuits [SS’10, Yao’86]

\[\begin{aligned}
&\text{DONE!} \\
&\text{q-FE for degree-d circuits}
\end{aligned}\]

\[\begin{aligned}
&\text{DONE!} \\
&\text{q-FE for arbitrary circuits}
\end{aligned}\]

Using MPC [BGW’88]

FE Bootstrapping Theorem: Using Randomized Encodings [AIK’05, Yao’86]

Open Problems:
- IND-secure FE for all circuits (unbounded collusions)?
- New connections amongst MPC, ZK and FE?
Thank you!
Small Pairwise Intersection:
Let $S_1, S_2, \ldots, S_n \in [N]$. Want to make sure:

$$| \bigcup_{i \neq j} (S_i \cap S_j) | \leq t$$

Cover-Freeness:
Let $w_1, w_2, \ldots, w_n \in [N]$. Want to make sure:

For all $i \in [q]$, $w_i \setminus \bigcup_{i \neq j} w_j \neq \emptyset$
Class of functions:

- Deterministic

- Computes bounded degree polynomial

- \(M = \mathbb{F}^l \), for all \(C \),
 \(C(\cdot) \) is \(l \) – variate polynomial over \(\mathbb{F} \) of degree \(d \)

- Handles arithmetic and boolean circuits (Set \(\mathbb{F} \) to be a large extension of \(\mathbb{F}_2 \)) (constant fan-in)