Q: Must you know the code of f
to securely compute f?

Mike Rosulek | * § Montana | CRYPTO 2012

black-box reductions

Reduction

X has an algorithm = Y has an algorithm

black-box reductions

Reduction

X has an algorithm = Y has an algorithm
Black-box: JB: BXis an algorithm for Y
Non-black-box: Algorithm for Y depends on code of algorithm for X

black-box reductions

Reduction
X has an algorithm = Y has an algorithm
Black-box: JB: BXis an algorithm for Y

Non-black-box: Algorithm for Y depends on code of algorithm for X

Pervasive question since [ImpagliazzoRudichg9]: ‘
When do black-box constructions exist?

black-box reductions

Reduction
Xhas an algorithm = Y has an algorithm
Black-box: JB: BXis an algorithm for Y
Non-black-box: Algorithm for Y depends on code of algorithm for X

Pervasive question since [ImpagliazzoRudichg9]:

When do black-box constructions exist?

Black-box constructions tend to be more practical
(efficient & modular).

secure computation...

Several parties wish to carry out an agreed-upon computation.
» Parties have individual inputs / output

» Security guarantees:

> Privacy (learn no more than your prescribed output)
» Inputindependence
» Output consistency, etc..

» Parties are mutually distrusting, some possibly malicious

black-box secure computation

Typical theorem statement:

If trapdoor functions exist, then for every [, there is a secure (in some
model) protocol for evaluating f.

black-box secure computation

Typical theorem statement:

If trapdoor functions exist, then for every [, there is a secure (in some
model) protocol for evaluating f.

trapdoor function
secure protocol
.//-' for evaluating f

black-box secure computation

Typical theorem statement:

If trapdoor functions exist, then for every f, there is a secure (in some
model) protocol for evaluating f.

trapdoor function BBV’
secure protocol

for evaluating f

Protocol can be black-box in its usage of underlying primitives!

» [Ishai+06, LindellPinkas07, Haitner08, IshaiPrabhakaranSahai08, Choi+09,
PassWee09, ..]

black-box secure computation

Typical theorem statement:

If trapdoor functions exist, then for every f, there is a secure (in some
model) protocol for evaluating f.

BBV
BB?

Protocol can be black-box in its usage of underlying primitives!

secure protocol
for evaluating f

» [Ishai+06, LindellPinkas07, Haitner08, IshaiPrabhakaranSahai08, Choi+09,
PassWee09, ..]

What about usage of f? Typical approach (since [Yao86,GMW87]):

» Express fas a circuit, and evaluate it gate-by-gate — non-black-box!

the model

the model (2-party SFE)

Let C be a class of 2-input functions.

Definition
Functionality-black-box (FBB) secure evaluation of C means:

» Joracle machines 74, 7g:
» VfFeC:

» 7h(x) = wh(y) is a secure protocol for evaluating f(x, y)

the model (2-party SFE)

Let C be a class of 2-input functions.
Definition
Functionality-black-box (FBB) secure evaluation of C means:

» Joracle machines 74, 7g:
» VfFeC:

» 7h(x) = wh(y) is a secure protocol for evaluating f(x, y)

If protocol uses trusted setup, then same setup for all f € C!

the model (2-party SFE)

Let C be a class of 2-input functions.
Definition
Functionality-black-box (FBB) secure evaluation of C means:

» Joracle machines 74, 7g:
» VfFeC:

» h(x) = 7h(y) is a secure protocol for evaluating A(x, y)

If protocol uses trusted setup, then same setup for all f € C!

FBB secure evaluation of C is trivialif:
» |C| = 1 (protocol could “know"” code of f)

» C is exactly learnable via oracle queries (learn code of £, then
proceed in non-black-box way)

autoreducibility

autoreducibility

How much “structure” does a set/function L have?

autoreducibility

How much “structure” does a set/function L have?

Basic Definition

Lis autoreducible if there exists efficient M:
1. M(x) = L(x)

2. Mdoesn’t simply query its oracle on x

autoreducibility examples

Discrete log problem in (g) is autoreducible:

autoreducibility examples

Discrete log problem in (g) is autoreducible:

dlog,(x): // find d such that g% = x

1. Choose a +— Z,, where n = ord(g).
2. Output: dlog,(x - g*) — a (mod n)

autoreducibility examples

Discrete log problem in (g) is autoreducible:

dlog,(x): // find d such that g% = x

1. Choose a +— Z,, where n = ord(g).
2. Output: dlog,(x - g") — a (mod n)

autoreducibility examples

Discrete log problem in (g) is instance-hiding autoreducible:

dlog,(x): // find d such that g% = x

1. Choose a < Z,, where n = ord(g).
2. Output: dlog,(x - g") — a (mod n)

“Instance-hiding” autoreducible [BeaverFeigenbaum90]

Oracle queries of M"(x) distributed independent of x.

semi-honest adversaries

characterization

Definition

A class C is 2-hiding autoreducible if there exists efficient M:

1. M (x,y) = fix,y), forallfe C

characterization

Definition
A class C is 2-hiding autoreducible if there exists efficient M:
1. M (x,y) = fix,y), forallfe C

2. M's queries to left oracle “don’t depend on” y

3. M's queries to right oracle “don’t depend on"” x

characterization

Definition

Aclass C is 2-hiding autoreducible if there exists efficient M:
1. Mf(x,y) = fx,y), forall f€ C
2. M's queries to left oracle “don’t depend on” y

3. M's queries to right oracle “"don’t depend on” x

Discussion:
» Same M must work for every f € C.

» Distinction between xand y.

characterization

Definition

Aclass C is 2-hiding autoreducible if there exists efficient M:
1. Mf(x,y) = fx,y), forall f€ C
2. M's queries to left oracle “don’t depend on” y

3. M's queries to right oracle “"don’t depend on” x

Discussion:
» Same M must work for every f € C.

» Distinction between xand y.

Theorem

FBB secure computation of C is possible in Fo-hybrid (against
semi-honest adversaries) if and only if C is 2-hiding autoreducible

proof: fbb = autoreducible

Given FBB protocol, construct M for autoreducibility:

R

Alice Bob

proof: fbb = autoreducible

Given FBB protocol, construct M for autoreducibility:

R

Alice Bob

|

X y

proof: fbb = autoreducible

Given FBB protocol, construct M for autoreducibility:

£ f
AN /
bl =5 Il
Alice Bob

|

X y

proof: fbb = autoreducible

Given FBB protocol, construct M for autoreducibility:

£ f
\égé/
.

proof: fbb = autoreducible

Given FBB protocol, construct M for autoreducibility:

Al

Alice Bob

proof: fbb = autoreducible

Given FBB protocol, construct M for autoreducibility:

Al

Alice Bob
X M

(%)

proof: fbb = autoreducible

Given FBB protocol, construct M for autoreducibility:

I3 f

d == [l

Alice Bob
X M

(%)

proof: fbb = autoreducible

Given FBB protocol, construct M for autoreducibility:

f f
Alice Bob
t 1y o
X
Y
Ax,y) (%)

Correctness of protocol:

proof: fbb = autoreducible

Given FBB protocol, construct M for autoreducibility:

£ f
Alice o Bob
t ty
" M
Y
fx,y) (x,y)

Correctness of protocol:
= Outputis f(x, y)
Security of protocol:
= Alice’s view (incl. oracle queries) “doesn’t depend on” y.

= Bob’s view (incl. oracle queries) “doesn’t depend on” x.

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

(%)

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

i@ 0

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

am g

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

trusted party (From For):

f\B.L

Alice E

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

» Entire protocol treats fas black-box.

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

a & g

» Entire protocol treats fas black-box.

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

» Entire protocol treats fas black-box.

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

» Entire protocol treats fas black-box.

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

» Entire protocol treats fas black-box.

proof: autoreducible = fbb

Given M from autoreducibility, construct FBB protocol:

G o8 g

» Entire protocol treats fas black-box.

proof: autoreducible = {bb

Given M from autoreducibility, construct FBB protocol:

| E
- z 'z
Alllce ; |
z I |

» Entire protocol treats fas black-box.

o)
o

N <—O

» Protocol output is correct (when protocol is followed!)

proof: autoreducible = {bb

Given M from autoreducibility, construct FBB protocol:

,,,,,,,,,,,,,,,

i B
'z
j »Bob

> Entire protocol treats fas black-box.

v

Protocol output is correct (when protocol is followed!)

v

Alice sees only output & M's left oracle queries.
» These “don’t depend on” Bob's input y.

v

Bob's sees only output & M's right oracle queries.
» These “don’t depend on” Alice's input x.

using the characterization:

Positive example
There is a class C that is 2-hiding autoreducible, but not learnable via
oracle queries.

= Non-trivial FBB secure computation!

® Class C is not especially interesting.

using the characterization:

Positive example

There is a class C that is 2-hiding autoreducible, but not learnable via
oracle queries.

= Non-trivial FBB secure computation!

® Class C is not especially interesting.

Negative example

Class of all PRFs is not 2-hiding autoreducible.

using the characterization:

Positive example

There is a class C that is 2-hiding autoreducible, but not learnable via
oracle queries.

= Non-trivial FBB secure computation!

® Class C is not especially interesting.

Negative example
Class of all PRFs is not 2-hiding autoreducible.
= Can’t securely evaluate PRFs in FBB way (Alice holds seed, Bob holds
input)
. even against semi-honest adversaries.

. even with arbitrarily powerful trusted setup

malicious adversaries

malicious adversaries

Definition

A class C is 1-hiding autoreducible if there exists efficient M:
1. M(xy) = fix,y), forallfeC
2. M's queries to oracle “don’t depend on” (x, y)

Compare to “instance hiding” [BeaverFeigenbaum90]

malicious adversaries

Definition
A class C is 1-hiding autoreducible if there exists efficient M:
1. M(x,y) = f(x,y),forallfFe C

2. M's queries to oracle “don’t depend on” (X, y)

Compare to “instance hiding” [BeaverFeigenbaum90]

Theorem

IF C is 1-hiding autoreducible, then FBB secure computation of C is
possible against malicious adversaries.

malicious adversaries

Definition
A class C is 1-hiding autoreducible if there exists efficient M:
1. M(x,y) = f(x,y),forallfFe C

2. M's queries to oracle “don’t depend on” (X, y)

Compare to “instance hiding” [BeaverFeigenbaum90]

Theorem

IF C is 1-hiding autoreducible, then FBB secure computation of C is
possible against malicious adversaries.

Proof sketch:
» Securely simulate M
» Send its oracle queries to both parties

» Securely check for agreement of oracle responses

wrap-up...

Also in the paper:

» Definition of FBB for more than just function evaluation
» Impossibility of ZK for membership in im(f), for FOWF

wrap-up. ..

Also in the paper:
» Definition of FBB for more than just function evaluation

> Impossibility of ZK for membership in im(f), for fOWF

Summary:

» Definitions for MPC protocol that has “black-box usage of
functionality”

» Characterizations based on autoreducibility
» Itis possible to “evaluate fwithout knowing the code of f”

» ... but definitely not in general.

