Q: Must you know the **code** of *f* to securely compute *f*?

Mike Rosulek | Montana | CRYPTO 2012

Reduction

X has an algorithm $\Rightarrow Y$ has an algorithm

Reduction

X has an algorithm $\Rightarrow Y$ has an algorithm

Black-box: $\exists B : B^X$ is an algorithm for Y

Non-black-box: Algorithm for Y depends on **code** of algorithm for X

Reduction

X has an algorithm $\Rightarrow Y$ has an algorithm

Black-box: $\exists B : B^X$ is an algorithm for Y

Non-black-box: Algorithm for Y depends on **code** of algorithm for X

Pervasive question since [ImpagliazzoRudich89]:

When do black-box constructions exist?

Reduction

X has an algorithm $\Rightarrow Y$ has an algorithm

Black-box: $\exists B : B^X$ is an algorithm for Y

Non-black-box: Algorithm for Y depends on **code** of algorithm for X

Pervasive question since [ImpagliazzoRudich89]:

When do black-box constructions exist?

Black-box constructions tend to be more practical (efficient & modular).

secure computation...

Several parties wish to carry out an agreed-upon computation.

- ► Parties have individual inputs / output
- Security guarantees:
 - Privacy (learn no more than your prescribed output)
 - Input independence
 - Output consistency, etc..
- Parties are mutually distrusting, some possibly malicious

Typical theorem statement:

If trapdoor functions exist, then for **every** f, there is a secure (in some model) protocol for evaluating f.

Typical theorem statement:

If trapdoor functions exist, then for **every** f, there is a secure (in some model) protocol for evaluating f.

Typical theorem statement:

If trapdoor functions exist, then for **every** f, there is a secure (in some model) protocol for evaluating f.

Protocol can be black-box in its usage of underlying primitives!

► [Ishai+06, LindellPinkas07, Haitner08, IshaiPrabhakaranSahai08, Choi+09, PassWee09, ..]

Typical theorem statement:

If trapdoor functions exist, then for **every** f, there is a secure (in some model) protocol for evaluating f.

Protocol can be black-box in its usage of underlying primitives!

[Ishai+06, LindellPinkas07, Haitner08, IshaiPrabhakaranSahai08, Choi+09, PassWee09, ..]

What about usage of f? Typical approach (since [Yao86,GMW87]):

 \blacktriangleright Express f as a circuit, and evaluate it gate-by-gate — non-black-box!

the model

the model (2-party SFE)

Let $\mathcal C$ be a class of 2-input functions.

Definition

Functionality-black-box (FBB) secure evaluation of $\mathcal C$ means:

- ightharpoonup oracle machines π_A, π_B :
- $ightharpoonup \forall f \in \mathcal{C}$:
- $\pi_A^f(x)
 ightleftharpoons \pi_B^f(y)$ is a secure protocol for evaluating f(x,y)

the model (2-party SFE)

Let $\mathcal C$ be a class of 2-input functions.

Definition

Functionality-black-box (FBB) secure evaluation of ${\mathcal C}$ means:

- ightharpoonup oracle machines π_A, π_B :
- ▶ \forall $f \in C$:
- $\pi_A^f(x)
 ightleftharpoons \pi_B^f(y)$ is a secure protocol for evaluating f(x,y)

If protocol uses trusted setup, then **same** setup for all $f \in \mathcal{C}$!

the model (2-party SFE)

Let $\mathcal C$ be a class of 2-input functions.

Definition

Functionality-black-box (FBB) secure evaluation of $\mathcal C$ means:

- ightharpoonup oracle machines π_A, π_B :
- $ightharpoonup \forall f \in \mathcal{C}$:
- $\pi_A^f(x)
 ightleftharpoons \pi_B^f(y)$ is a secure protocol for evaluating f(x,y)

If protocol uses trusted setup, then **same** setup for all $f \in \mathcal{C}$!

FBB secure evaluation of C is *trivial* if:

- $ightharpoonup |\mathcal{C}| = 1$ (protocol could "know" code of f)
- $ightharpoonup \mathcal{C}$ is exactly learnable via oracle queries (learn code of f, then proceed in non-black-box way)

autoreducibility

autoreducibility

How much "structure" does a set/function L have?

autoreducibility

How much "structure" does a set/function L have?

Basic Definition

L is autoreducible if there exists efficient M:

- 1. $M^{L}(x) = L(x)$
- 2. M doesn't simply query its oracle on x

Discrete log problem in $\langle g \rangle$ is autoreducible:

Discrete log problem in $\langle g \rangle$ is autoreducible:

$$dlog_{g}(x)$$
://find d such that $g^{d} = x$

- 1. Choose $a \leftarrow \mathbb{Z}_n$, where $n = \operatorname{ord}(g)$.
- 2. Output: $dlog_q(x \cdot g^a) a \pmod{n}$

Discrete log problem in $\langle g \rangle$ is autoreducible:

$$dlog_{g}(x)$$
://find d such that $g^{d} = x$

- 1. Choose $a \leftarrow \mathbb{Z}_n$, where $n = \operatorname{ord}(g)$.
- 2. Output: $dlog_q(\mathbf{x} \cdot \mathbf{g}^a) a \pmod{n}$

Discrete log problem in $\langle g \rangle$ is instance-hiding autoreducible:

$$dlog_{g}(x)$$
://find d such that $g^{d} = x$

- 1. Choose $a \leftarrow \mathbb{Z}_n$, where $n = \operatorname{ord}(g)$.
- 2. Output: $dlog_q(\mathbf{x} \cdot \mathbf{g}^a) a \pmod{n}$

"Instance-hiding" autoreducible [BeaverFeigenbaum90]

Oracle queries of $M^{L}(x)$ distributed independent of x.

semi-honest adversaries

Definition

A class $\mathcal C$ is 2-hiding autoreducible if there exists efficient M :

1.
$$\mathit{M}^{\mathit{f},\mathit{f}}(\mathit{x},\mathit{y}) = \mathit{f}(\mathit{x},\mathit{y})$$
, for all $\mathit{f} \in \mathcal{C}$

Definition

A class C is 2-hiding autoreducible if there exists efficient M:

- 1. $\mathit{M}^{f,f}(x,y) = \mathit{f}(x,y)$, for all $\mathit{f} \in \mathcal{C}$
- 2. M's queries to left oracle "don't depend on" y
- 3. M's queries to right oracle "don't depend on" x

Definition

A class $\mathcal C$ is 2-hiding autoreducible if there exists efficient M:

- 1. $\mathit{M}^{f,f}(x,y) = \mathit{f}(x,y)$, for all $\mathit{f} \in \mathcal{C}$
- 2. M's queries to left oracle "don't depend on" y
- 3. M's queries to right oracle "don't depend on" x

Discussion:

- ▶ Same *M* must work for every $f \in C$.
- Distinction between x and y.

Definition

A class C is 2-hiding autoreducible if there exists efficient M:

- 1. $M^{f,f}(x,y) = f(x,y)$, for all $f \in \mathcal{C}$
- 2. M's queries to left oracle "don't depend on" y
- 3. M's queries to right oracle "don't depend on" x

Discussion:

- ▶ Same *M* must work for every $f \in C$.
- Distinction between x and y.

Theorem

FBB secure computation of $\mathcal C$ is possible in $\mathcal F_{\mathrm{ot}}$ -hybrid (against semi-honest adversaries) if and only if $\mathcal C$ is 2-hiding autoreducible

Given FBB protocol, construct M for autoreducibility:

Correctness of protocol:

 \Rightarrow Output is f(x, y)

Given FBB protocol, construct *M* for autoreducibility:

Correctness of protocol:

 \Rightarrow Output is f(x, y)

Security of protocol:

- \Rightarrow Alice's view (incl. oracle queries) "doesn't depend on" y.
- \Rightarrow Bob's view (incl. oracle queries) "doesn't depend on" x.

proof: autoreducible \Rightarrow fbb

Given M from autoreducibility, construct FBB protocol:

Given M from autoreducibility, construct FBB protocol:

Given M from autoreducibility, construct FBB protocol:

Given M from autoreducibility, construct FBB protocol:

Given M from autoreducibility, construct FBB protocol:

Given M from autoreducibility, construct FBB protocol:

Given M from autoreducibility, construct FBB protocol:

- Entire protocol treats f as black-box.
- Protocol output is correct (when protocol is followed!)

- Entire protocol treats f as black-box.
- Protocol output is correct (when protocol is followed!)
- ► Alice sees only output & M's left oracle queries.
 - ► These "don't depend on" Bob's input y.
- ▶ Bob's sees only output & M's right oracle queries.
 - ► These "don't depend on" Alice's input x.

using the characterization:

Positive example

There is a class $\mathcal C$ that is 2-hiding autoreducible, but *not learnable* via oracle queries.

- ⇒ Non-trivial FBB secure computation!
- \odot Class $\mathcal C$ is not especially interesting.

using the characterization:

Positive example

There is a class $\mathcal C$ that is 2-hiding autoreducible, but *not learnable* via oracle queries.

- ⇒ Non-trivial FBB secure computation!
- \odot Class $\mathcal C$ is not especially interesting.

Negative example

Class of all PRFs is **not** 2-hiding autoreducible.

using the characterization:

Positive example

There is a class $\mathcal C$ that is 2-hiding autoreducible, but *not learnable* via oracle queries.

- ⇒ Non-trivial FBB secure computation!
- \odot Class $\mathcal C$ is not especially interesting.

Negative example

Class of all PRFs is **not** 2-hiding autoreducible.

- ⇒ Can't securely evaluate PRFs in FBB way (Alice holds seed, Bob holds input)
 - ... even against semi-honest adversaries.
- ... even with arbitrarily powerful trusted setup

Definition

A class C is 1-hiding autoreducible if there exists efficient M:

- 1. $M^f(x,y) = f(x,y)$, for all $f \in \mathcal{C}$
- 2. M's queries to oracle "don't depend on" (x, y)

Compare to "instance hiding" [BeaverFeigenbaum90]

Definition

A class $\mathcal C$ is 1-hiding autoreducible if there exists efficient M:

- 1. $M^f(x,y) = f(x,y)$, for all $f \in \mathcal{C}$
- 2. M's queries to oracle "don't depend on" (x, y)

Compare to "instance hiding" [BeaverFeigenbaum90]

Theorem

If $\mathcal C$ is 1-hiding autoreducible, then FBB secure computation of $\mathcal C$ is possible against malicious adversaries.

Definition

A class C is 1-hiding autoreducible if there exists efficient M:

- 1. $M^f(x,y) = f(x,y)$, for all $f \in \mathcal{C}$
- 2. M's queries to oracle "don't depend on" (x, y)

Compare to "instance hiding" [BeaverFeigenbaum90]

Theorem

If $\mathcal C$ is 1-hiding autoreducible, then FBB secure computation of $\mathcal C$ is possible against malicious adversaries.

Proof sketch:

- Securely simulate M
- Send its oracle queries to both parties
- Securely check for agreement of oracle responses

wrap-up...

Also in the paper:

- Definition of FBB for more than just function evaluation
- ▶ Impossibility of ZK for membership in im(f), for f OWF

wrap-up...

Also in the paper:

- Definition of FBB for more than just function evaluation
- ▶ Impossibility of ZK for membership in im(f), for f OWF

Summary:

- Definitions for MPC protocol that has "black-box usage of functionality"
- Characterizations based on autoreducibility
- It is possible to "evaluate f without knowing the code of f"
- ... but definitely not in general.

The End