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Random Oracle Model (ROM) 
• Sometimes, we can’t prove a scheme secure in the 

standard model. 
•  Instead, model a hash function as a random oracle, and 

prove security in this model [BR 1993] 



Why Use the Random Oracle Model? 
• Most efficient schemes are often only proved secure in 

the random oracle model 
•  True even in post-quantum world 

•  RO-based GPV signatures more efficient that non-RO CHKP and 
ABB signatures [GPV 2009, CHKP 2010, ABB 2010] 

•  RO-based Hierarchical IBE more efficient than non-RO versions 

• Unfortunately, these schemes are only proved secure in 
the classical ROM 
•  Only consider classical queries to the random oracle 



The Quantum Random Oracle Model 
•  Interaction with primitives is still classical 
• Allow quantum queries to random oracle 

•  When instantiated, random oracle replaced with hash function 
•  Code for hash function is part of specification 
•  Adversary can evaluate hash function on quantum superposition 
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Security in the QROM 
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Security Proofs in the QROM 
• Classical random oracle model security proofs do not 

carry over to the quantum setting 
• Difficulties: 

•  Simulating the random oracle 
•  Peaking into the adversary 
•  Programming the random oracle 



Previous Results [Boneh et al. 2011] 
• Separation: there exist schemes secure in the classical 

ROM against quantum adversaries, but that are insecure 
in the quantum ROM 

• Some classical proofs can be adapted to the quantum 
setting: 
•  Answer RO queries randomly, same across all queries 
•  Use pseudorandom function to generate randomness 
•  Examples:  GPV Signatures [GPV 2009] 

  Full Domain Hash with specific trapdoor permutations 
   [Coron 2000] 
  Katz-Wang Signatures [KW 2003] 
  Hybrid encryption scheme 



Our Results 
• Simulating the random oracle without additional 

assumptions 
• New security proofs in the quantum random oracle model 

•  Identity-Based Encryption 
•  Hierarchical Identity-Based Encryption 
•  Generic Full-Domain Hash 

• New tools for arguing the indistinguishability of oracle 
distributions by quantum adversaries. 



Common Proof Technique in Classical ROM 

• Start with an adversary A that makes q queries to random 
oracle H 

• Construct B that solves some problem: 
•  Pick a random query i 
•  For all other queries, answer in way that looks random 
•  For query i, plug in some challenge c 
•  If A happens to use query i, then we can solve our problem 
•  A uses query i with probability 1/q, so happens with non-negligible 

probability 
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Quantum Attempt 2 
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Quantum Attempt 2 
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Semi-Constant Distributions 
• Parameterized by λ 
• Pick a set S as follows: each x in the domain is in S with 

probability λ 
• Pick a random c 
•  For all x in S, set H(x) = c 
•  For all other x, chose H(x) randomly and independently 



Semi-Constant Distributions 
• Parameterized by λ 
• Pick a set S as follows: each x in the domain is in S with 

probability λ 
• Pick a random c 
•  For all x in S, set H(x) = c 
•  For all other x, chose H(x) randomly and independently 

Theorem: Any quantum adversary making q 
queries to a semi-constant function can only tell it’s 
not random with probability O(q4λ2) 



Quantum Security Proof 
• Suppose adversary wins with probability ε 
• Pick the set S, still let oracle be random 
• Probability adversary uses one of the points in S: λ 
• Probability wins and uses a point in S: λε 
• Set H(x) = c for all x in S 
• Probability we succeed: λε-O(q4λ2) 
• Choose λ to maximize 
• Succeed with probability O(ε2/q4) 



Generating the Random Values 
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Generating the Random Values 
• BDF+ 2011:  

•  Assume existence of quantum-secure PRF 
•  Pick a random key k before any queries 
•  Let Rx = PRF(k,x) 

• Our solution: 
•  Adversary makes some polynomial q of queries 
•  Pick a random 2q-wise independent function f 
•  Let Rx = f(x) 
•  We show 2q-wise independence suffices using a standard 

technique called the polynomial method 



Generating the Random Values 
• BDF+ 2011:  

•  Assume existence of quantum-secure PRF 
•  Pick a random key k before any queries 
•  Let Rx = PRF(k,x) 

• Our solution: 
•  Adversary makes some polynomial q of queries 
•  Pick a random 2q-wise independent function f 
•  Let Rx = f(x) 
•  We show 2q-wise independence suffices using a standard 

technique called the polynomial method 

We can remove the quantum-secure PRF 
assumption from prior results as well 



Applications of this method 
•  IBE scheme [GPV 2009] 
• Generic Full Domain Hash 

•  Previous results only showed for specific trapdoor permutations 

• Apply iteratively for Hierarchical IBE [CHPK 2010, ABB 
2010] 
•  Security degrades doubly exponentially in depth of identity tree 
•  Classically, only singly exponential 



Quantum-Secure PRFs [Zhandry, FOCS 2012] 

• So far, only considered case where interaction with 
primitive remains classical 

• What if we allow quantum queries to primitive? 
•  Example: pseudorandom functions 



Standard Security vs Quantum Security 
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Quantum-Secure PRFs 
• Results [Zhandry, FOCS 2012] 

•  In general, PRF secure against classical queries not secure against 
quantum queries 

•  However, several classical constructions remain secure, even 
against quantum queries 
•  From pseudorandom generators [GGM 1984] 
•  From pseudorandom synthesizers [NR 1995] 
•  Direct constructions based on lattices [BPR 2011] 

• Also have MACs secure when adversary can get tags on 
a superposition 



Open Questions 
• Proving the quantum security of constructions based on 

Fiat-Shamir [FS 1987] 
•  Signatures 
•  Group Signatures 
•  CS Proofs 

• Other constructions 
•  CCA security from weaker notions [FO 1999] 
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Thank You! 


