Pseudorandom Functions and Lattices

Abhishek Banerjee! | Chris Peikert!| Alon Rosen?

'Georgia Tech

2|DC Herzliya

CRYPTO 2011 Rump Session
16 Aug 2011

1/6

Pseudorandom Functions

> Afamily 7 = {F: {0,1} — {0,1}} s.t. (F < F) ~ rand function.

Oodles of applications in symmetric cryptography.

2/6

Pseudorandom Functions

> Afamily 7 = {F: {0,1} — {0,1}} s.t. (F < F) ~ rand function.

Oodles of applications in symmetric cryptography.

@ Goldreich-Goldwasser-Micali [GGM’84]
v Based on any PRG

2/6

Pseudorandom Functions

> Afamily 7 = {F: {0,1} — {0,1}} s.t. (F < F) ~ rand function.

Oodles of applications in symmetric cryptography.

@ Goldreich-Goldwasser-Micali [GGM’84]

v Based on any PRG
X Inherently sequential, depth > k for k-bit inputs

Pseudorandom Functions

> Afamily 7 = {F: {0,1}* — {0,1}} s.t. (F + F) ~ rand function.

Oodles of applications in symmetric cryptography.

@ Goldreich-Goldwasser-Micali [GGM’84]

v Based on any PRG
X Inherently sequential, depth > k for k-bit inputs

@ Naor-Reingold/Naor-Reingold-Rosen [NR'95,NR'97,NRR'00]

v/ Based on “synthesizers” or number theory (DDH, factoring)
v Low-depth: NC?, NC! or even TC?

Pseudorandom Functions

> Afamily 7 = {F: {0,1}* — {0,1}} s.t. (F + F) ~ rand function.

Oodles of applications in symmetric cryptography.

@ Goldreich-Goldwasser-Micali [GGM’84]
v Based on any PRG
X Inherently sequential, depth > k for k-bit inputs

@® Naor-Reingold/Naor-Reingold-Rosen [NR'95,NR'97,NRR’00]
v/ Based on “synthesizers” or number theory (DDH, factoring)
v Low-depth: NC?, NC! or even TC?
X Huge circuits that need mucho preprocessing
X No “post-quantum” construction under standard assumptions

Our Results

© Low-depth, (relatively) small-circuit PRFs from (ring-)LWE

3/6

Our Results

© Low-depth, (relatively) small-circuit PRFs from (ring-)LWE
* Synthesizer-based PRF in NC? (or TC') a la [NR'95]

* Direct construction in NC' (or TC?) analogous to [NR'97,NRR’00]

3/6

Our Results

© Low-depth, (relatively) small-circuit PRFs from (ring-)LWE
* Synthesizer-based PRF in NC? (or TC') a la [NR'95]

* Direct construction in NC' (or TC?) analogous to [NR'97,NRR’00]

@® Main technique: “derandomization” of LWE: deterministic errors

“Learning With Rounding” (LWR)
Learning With Errors (LWE) [Regev’05]

» Distinguish pairs (a; , b; = (a;,s) + ¢;) € Zj; x Z, from uniform

> Interpretation: errors ¢; “wipe out” Isb’s of the inner products

4/6

“Learning With Rounding” (LWR)
Learning With Errors (LWE) [Regev’05]

» Distinguish pairs (a; , b; = (a;,s) +¢;) € Zy x L4 from uniform

> Interpretation: errors ¢; “wipe out” Isb’s of the inner products

Learning With Rounding (LWR) [This work]

q 10 X
> Let g > p and define |x], = [(p/q) x| mod p. " ¥ 0%’
12 =1 0
(Common in decryption to “remove noise.”) 13 Y%) =
14 x 22
15 21
16 17 15 19 20

4
4/6

“Learning With Rounding” (LWR)
Learning With Errors (LWE) [Regev’05]

» Distinguish pairs (a; , b; = (a;,s) +¢;) € Zy x L4 from uniform

> Interpretation: errors ¢; “wipe out” Isb’s of the inner products

Learning With Rounding (LWR) [This work]

> Letg > pand define [x], = [(p/q) -x] modp. ' X 0%’
12+ 1 0
(Common in decryption to “remove noise.”) 13 % 2 3
14 % 22
> LWR: distinguish pairs P 6 17 18 19 20 2

(ai, bi = |(ai,s)]p) € Zj x Z, from uniform

Interpretation: “throw out” Isb’s of the inner products

“Learning With Rounding” (LWR)
Learning With Errors (LWE) [Regev’05]

» Distinguish pairs (a; , b; = (a;,s) +¢;) € Zy x L4 from uniform

> Interpretation: errors ¢; “wipe out” Isb’s of the inner products

Learning With Rounding (LWR) [This work]

> Letg > pand define [x], = [(p/q) -x] modp. ' X 0%’
12+ 1 0
(Common in decryption to “remove noise.”) 13 % 2 3
14 % 22
> LWR: distinguish pairs P 6 17 18 19 20 2

(ai, bi = |(ai,s)]p) € Zj x Z, from uniform

Interpretation: “throw out” Isb’s of the inner products

» We prove LWE < LWR for appropriate parameters

Synthesizer-Based PRF (a /a (nr95))

Synthesizer from LWR
> For random a;,a;,... and sy, s, ... (mod g),

([(a,- , sjﬂp)ij ~ uniform mod p

5/6

Synthesizer-Based PRF (a /a (nr95))

Synthesizer from LWR
> For random a;,a;,... and sy, s, ... (mod g),

(L(a,- : Sj>—|p)ij ~ uniform mod p

PRF on Domain {0, 1}*=%' (e.g. d = 7)

» (Public) moduli g4 > g4—1 > --- > qo.

> Secret key is 2k square matrices S; , € Zy " fori € [k], b € {0, 1}.

(Or ring elements s, , using ring-LWR [LPR’10].)

5/6

Synthesizer-Based PRF (a /a (nr95))

Synthesizer from LWR
> For random a;,a;,... and sy, s, ... (mod g),

(L(a,- : Sj>—|p)ij ~ uniform mod p

PRF on Domain {0, 1}*=%' (e.g. d = 7)

» (Public) moduli g4 > g4—1 > --- > qo.

> Secret key is 2k square matrices S; , € Zy " fori € [k], b € {0, 1}.
(Or ring elements s, , using ring-LWR [LPR’10].)

» Depth d = Igk tree of LWR synthesizers:

F(xy---xg) =

ULSIM . S27X2]q2' 1S3, S47x41q2-| ql‘ USS’XS : Sé,xﬁ]qz' [S7.4, - SS,xx—lqz-‘ QI—‘
40

5/6

Shallower: A Direct Construction

» Public moduli g > p.

> Secret key is ring elements a, 51, . . ., sy, modulo ¢

6/6

Shallower: A Direct Construction

» Public moduli g > p.
> Secret key is ring elements a, 51, . . ., sy, modulo ¢

> “Rounded subset-product” function:

k
F(xp---x) = {a . Hsf" mod q—‘
i=1

p

» Very efficient evaluation in TC®, by reduction to subset-sum

6/6

Shallower: A Direct Construction

» Public moduli g > p.
> Secret key is ring elements a, 51, . . ., sy, modulo ¢

> “Rounded subset-product” function:

k
F(xp---x) = {a . Hsf" mod q—‘
i=1

p

» Very efficient evaluation in TC®, by reduction to subset-sum

Details: ePrint report #2011/401

