1/p–Secure Multiparty Computation without Honest Majority and the Best of Both Worlds

- Amos Beimel (BGU)
- Eran Omri (BIU)
- Yehuda Lindell (BIU)
- Ilan Orlov (BGU)
Our Results in a Glance

- We explore $1/p$-secure multiparty protocols without an honest majority

 Positive result:
 - $1/p$-secure protocols for **constant** number of parties for computing any function with polynomial-sized range tolerating any number of corrupt parties

 Impossibility result:
 - There is no general $1/p$-secure protocol for **non-constant** number of parties

 Best of both worlds:
 - A single protocol that
 - Honest majority \Rightarrow Full security
 - No honest majority \Rightarrow $1/p$-security
Talk Outline

- Background
- Our results
- The ideas of our protocol
- Summary and Open Problems
A Motivating Story
The Goal
The Model

- **m** parties

- **r-round protocol**
 - \(r = \text{poly}(\text{security parameter}) \)

- **Adversary:**
 - Polynomial time
 - Malicious – corruptions and controls some of the parties
 - Rushing adversary
 - In each round:
 - Sees all messages of honest parties
 - Chooses and sends messages on behalf of malicious parties
 - Can depend on the messages of honest parties
 - More realistic than simulations channels

- **Broadcast channel**
The security definitions involve a comparison between two worlds:

- **Ideal World**: There is a trusted party that helps with the computation
- **Real World**: The protocol
Guarantees many nice properties:
- Privacy
- Correctness
- Fairness

(fairness = corrupt parties get the output ⇔ the honest parties get the output)
Secure Computation – Full Security

Ideal World

Real World

Security Requirement:
No REAL world adversary can do more harm than IDEAL world adversary
Is Full Security Achievable?

- **[GoldreichMicaliWigderson87]:** Any polynomial-time F can be computed with full security with an honest majority.

- **[Cleave86]:** Any r-round m-party coin-tossing protocol has bias $\Omega(1/r)$ without an honest majority.

Conclusion: impossible to achieve full security without an honest majority for general functionalities.
What Can Be Achieved Without an Honest Majority?

- [GMW87]: Security–with–abort
 - Achieved without an honest majority
 - Does not provide **ANY** fairness!!
 - The adversary can learn the output, while the honest parties learn noting

Can we get reasonable fairness without honest majority?

1/p–Security!!
Compare the previous two worlds:

- **Full security** – REAL fully emulates IDEAL
- **1/p-secuity** – REAL emulates IDEAL within “computational distance” of at most 1/p
1/p-Secure 2-Party Computation [GK10]

- For every function F, where the size of domain or range is polynomial, there exists a $1/p$-secure 2-party protocol
 - For every polynomial p

- **Impossibility:** Domain or range have to be polynomial

GK: Can this result be extended to the multiparty case?

YES! NO!
Talk Outline

- Background
- Our results
- The ideas of our protocol
- Summary and Open Problems
Our Main Result

Theorem: For every function F, where
1. Number of parties m is constant
2. Size of range of F is polynomial
there exists a $1/p$-secure protocol that tolerates up to $m-1$ corrupt parties.
 - For every polynomial p

Informally: We constructed $1/p$-secure protocols for constant number of parties.

Also when
1. No. of corrupt parties $< 2m/3$
2. F is deterministic & size of domain of F is constant
3. $m = O(\log \log n)$
An Impossibility Result

- **Special case of possibility result**: There exists a $1/p$-secure protocol when
 - m is constant
 - F is deterministic
 - $|\text{Domain}|$ of each party is polynomial

- **Impossibility**: Such protocol is not possible when m is non-constant
 - Explains why $m=O(1)$ in our result
[GMW 87]: Any polynomial-time F can be computed by a protocol with full security with an honest majority

If there is no honest majority, the above protocol does not guarantee any security

Goal: Single protocol that achieves:
- Honest majority \rightarrow Full security
- No honest majority \rightarrow Some weaker notion of security (fallback security)

[Ishai, Katz, Kushilevitz, Lindell, Petrank]: Defined the problem and suggested protocols achieving several models of fallback security

Do not achieve the above goal (for some good reasons)
For every function F for m parties, if
1. Both the domain and the range are polynomial
2. m is constant
then, there exists a (single) protocol
- Honest majority \rightarrow Full security
- No honest majority $\rightarrow 1/p$–security

This is best of both worlds!

Secure–with–abort is not possible as a fallback
[IKKLP]
- Strong motivation for $1/p$–security
Talk Outline

- Background
- Our Results
- The Ideas of Our Protocol
- Summary and Open Problems
The Structure of Our Protocol

- The protocol has 2 steps:
 - Preprocessing step
 - \(r \) rounds of interaction

- **Prepressing:** The parties execute a secure-with-abort protocol:
 - The parties input their inputs
 - Receive a set of shares and signed messages for executing an \(r \)-round protocol

- **Rounds of Interaction:** There are \(r \) rounds, in each round:
 - Each party broadcasts its message
 - Each subset of parties learns a value
 - The value is used if other parties abort
The Structure of Our Protocol (2)

- There is a special round, called i^*
 - After round i^*, each subset of parties receives the actual output of F
 - Before round i^*, each subset of parties receives a value that depends only on its inputs

- To cause “computational distance”, the adversary must guess i^*

- The value of i^* is concealed

- This structure was used in previous constructions:
 [IKLP06, Katz06, GK06, GHKL06, MNS09, GK10, BOO10, …]
New Challenges and New Ideas

- How to conceal the value of i* in a multiparty setting?
- How to deal with any possible abort of any subset?

Some of the solutions:
 - The information is shared in a few layers of secret sharing
 - After an abort, the remaining parties execute a protocol
 - This protocol has to conceal i*
Talk Outline

- Background
- Our Results
- The Ideas of Our Protocol
- Summary and Open Problems
Summary

- We explore $1/p$–secure multiparty protocols without an honest majority

- Positive result:
 - $1/p$–secure protocols for constant number of parties*

- Impossibility result:
 - There is no general $1/p$–secure protocol for non–constant number of parties*

- Best of both worlds
 - Single protocol that
 - Honest majority \rightarrow Full security
 - No honest majority \rightarrow $1/p$–security

* Some restriction might apply
The Future

NEXT EXIT
Open Problems

- Is there a $1/p$-secure protocol for F with non-constant number of parties and polynomial-sized range and domain?

- Are there more efficient $1/p$-secure protocols?

- Can we guarantee full-privacy and partial fairness in secure multiparty computation without an honest majority?
 - $1/p$ security: With prob. $1/p$ privacy can be totally lost
 - Maybe suggest new definitions?
Thank you !