Perfectly-Secure Multiplication for Any $t<\frac{n}{3}$

Gilad Asharov
Bar-Ilan University, Israel

Yehuda Lindell
Bar-Ilan University, Israel

Tal Rabin
IBM Research, New York
Secure Multiparty Computation

- A set of parties with private inputs wish to compute some joint function of their inputs.
- Parties wish to preserve some security properties. E.g., privacy and correctness.
 - Example: secure election protocol.
- Security must be preserved in the face of adversarial behavior by some of the participants, or by an external party.
The BGW Protocol [STOC 1988]

- Michael Ben-Or, Shafi Goldwasser and Avi Wigderson

- A protocol for general multiparty computation
 - Perfectly secure
 - Adaptively secure
 - Concurrently secure

- Elegant and beautiful construction
- A huge impact on our field
Our Results

- A full specification of the BGW multiplication protocol
 - The protocol requires a new step for the case of \(\frac{n}{4} \leq t < \frac{n}{3} \)
 - A full proof of security

- A new multiplication protocol
 - More efficient
 - Simpler
 - Constant round per multiplication (as BGW)
Related Work

- Perfect multiplication based on homomorphic secret sharing
 - [Cramer, Damgard, Maurer 00]

- Efficiency of perfect multiplication
 - Player elimination technique [Hirt, Maurer, Przydatek 00] [Hirt, Maurer 01], [Beerliova-Trubiniova, Hirt 06] [Hirt, Nielsen 06] [Damgard, Nielsen 07] [Trubiniova, Hirt 08]
 - Very efficient protocols
 - The round complexity per multiplication depends on the number of parties
The BGW Protocol

Each party distributes its input using secret sharing

Invariant: At each wire, the intermediate value is hidden by secret sharing

At each gate, the parties compute the shares of the output wire using the shares of the input wires

At the output wires – the parties send to the relevant party their shares
The invariant:
- Each party holds shares of a and b

Addition Gate:
- Each party locally adds its shares
 - The result is a share of a random polynomial of degree-t that hides $a+b$
The Computation Stage

- The invariant:
 - Each party holds shares of a and b

- Addition Gate:
 - Each party locally adds its shares
 - The result is a share of a random polynomial of degree-t that hides $a+b$

- Multiplication Gate:
 - Each party locally multiplies its shares
 - Result is a share of a poly of degree-$2t$ that hides $a \cdot b$
 - Run an interactive protocol to reduce the degree
The Multiplication Protocol (simplification according to [GRR98])

Possible whenever at least 2t+1 shares were sub-shared correctly
Moving to the Malicious* – Problem

The honest parties need to identify the incorrect shares

*we assume:
at least $2t+1$ honest parties at most t corrupted parties
First BGW Tool: Robust Sub-Sharing

<table>
<thead>
<tr>
<th></th>
<th>f(1)</th>
<th>f(2)</th>
<th>f(3)</th>
<th>degree-t</th>
<th>f(n-2)</th>
<th>f(n-1)</th>
<th>f(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_1(1)</td>
<td>g_1(2)</td>
<td>g_1(3)</td>
<td></td>
<td></td>
<td>g_1(n-2)</td>
<td>g_1(n-1)</td>
<td>g_1(n)</td>
</tr>
<tr>
<td>g_2(1)</td>
<td>g_2(2)</td>
<td>g_2(3)</td>
<td></td>
<td></td>
<td>g_2(n-2)</td>
<td>g_2(n-1)</td>
<td>g_2(n)</td>
</tr>
<tr>
<td>g_3(1)</td>
<td>g_3(2)</td>
<td>g_3(3)</td>
<td></td>
<td></td>
<td>g_3(n-2)</td>
<td>g_3(n-1)</td>
<td>g_3(n)</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_n(1)</td>
<td>g_n(2)</td>
<td>g_n(3)</td>
<td></td>
<td></td>
<td>g_n(n-2)</td>
<td>g_n(n-1)</td>
<td>g_n(n)</td>
</tr>
</tbody>
</table>
Second BGW Tool: Verifying Product

\[P_i \]
\[P_1 \]
\[P_2 \]
\[P_3 \]
\[P_{n-2} \]
\[P_{n-1} \]
\[P_n \]

\[a_i \]
\[A_i(1) \]
\[A_i(2) \]
\[A_i(3) \]
\[A_i(n-2) \]
\[A_i(n-1) \]
\[A_i(n) \]

\[b_i \]
\[B_i(1) \]
\[B_i(2) \]
\[B_i(3) \]
\[B_i(n-2) \]
\[B_i(n-1) \]
\[B_i(n) \]

\[a_i b_i \]
\[C_i(1) \]
\[C_i(2) \]
\[C_i(3) \]
\[C_i(n-2) \]
\[C_i(n-1) \]
\[C_i(n) \]
Multiplication - Overview

\[
\begin{array}{ccccccc}
 & a_1 & a_2 & a_3 & \text{hides a} & a_{n-2} & a_{n-1} & a_n \\
A_1(1) & A_1(2) & A_1(3) & \ldots & \text{hides a}_1 & A_1(n-2) & A_1(n-1) & A_1(n) \\
A_2(1) & A_2(2) & A_2(3) & \ldots & \text{hides a}_2 & A_2(n-2) & A_2(n-1) & A_2(n) \\
\end{array}
\]

\[
\begin{array}{ccccccc}
 & b_1 & b_2 & b_3 & \text{hides b} & b_{n-2} & b_{n-1} & b_n \\
B_1(1) & B_1(2) & B_1(3) & \ldots & \text{hides b}_1 & B_1(n-2) & B_1(n-1) & B_1(n) \\
B_2(1) & B_2(2) & B_2(3) & \ldots & \text{hides b}_2 & B_2(n-2) & B_2(n-1) & B_2(n) \\
\end{array}
\]

\[
\begin{array}{ccccccc}
 & C_1(1) & C_1(2) & C_1(3) & \text{hides a}_1b_1 & C_1(n-2) & C_1(n-1) & C_1(n) \\
C_2(1) & C_2(2) & C_2(3) & \text{hides a}_2b_2 & C_2(n-2) & C_2(n-1) & C_2(n) \\
\end{array}
\]
Multiplication - Overview

<table>
<thead>
<tr>
<th>a₁</th>
<th>a₂</th>
<th>a₃</th>
<th>hides a</th>
<th>aₙ₋₂</th>
<th>aₙ₋₁</th>
<th>aₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁(1)</td>
<td>A₁(2)</td>
<td>A₁(3)</td>
<td>... hides a₁</td>
<td>A₁(n-2)</td>
<td>A₁(n-1)</td>
<td>A₁(n)</td>
</tr>
<tr>
<td>A₂(1)</td>
<td>A₂(2)</td>
<td>A₂(3)</td>
<td>... hides a₂</td>
<td>A₂(n-2)</td>
<td>A₂(n-1)</td>
<td>A₂(n)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b₁</th>
<th>b₂</th>
<th>b₃</th>
<th>hides b</th>
<th>bₙ₋₂</th>
<th>bₙ₋₁</th>
<th>bₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₁(1)</td>
<td>B₁(2)</td>
<td>B₁(3)</td>
<td>... hides b₁</td>
<td>B₁(n-2)</td>
<td>B₁(n-1)</td>
<td>B₁(n)</td>
</tr>
<tr>
<td>B₂(1)</td>
<td>B₂(2)</td>
<td>B₂(3)</td>
<td>... hides b₂</td>
<td>B₂(n-2)</td>
<td>B₂(n-1)</td>
<td>B₂(n)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

| C₁(1) | C₁(2) | C₁(3) | hides a₁b₁ | C₁(n-2) | C₁(n-1) | C₁(n) |
| C₂(1) | C₂(2) | C₂(3) | hides a₂b₂ | C₂(n-2) | C₂(n-1) | C₂(n) |
The Second Tool: Proving that $c_i = a_i b_i$

Inputs:

The parties need to verify that $C_i(x)$ is of degree-t

- The free coefficient of $C_i(x)$ is always $A_i(0)B_i(0) = a_i b_i$
- Choosing $D_1, ..., D_t$ inappropriately can end up with a polynomial of degree higher than t
Verifying the Degree

- Parties have shares of $C_i(x)$ and want to check that it is of degree-t
- P_i distributes $C'_i(x)$ using VSS (guarantees degree-t) and claims that $C'_i(x) = C_i(x)$
 - $C_i(0)$ has the correct free coefficient, but unknown degree
 - $C'_i(x)$ is of degree-t, not necessarily the correct free coefficient
- Each party P_j checks that $C'_i(j) = C_i(j)$
 - If $C'_i(j) \neq C_i(j)$ – it broadcasts a “complaint”
- If number of complaints $> t$: "reject"
 - need more than t complaints, since the adversary may complain about an honest dealer
A Subtle Attack on this Solution

- The dealer creates $D_1(x),...,D_t(x)$ not according to the protocol and so $C_i(x)$ is of degree higher than t
- It chooses $C'_i(x)$ of degree-t such that $C'_i(j) = C_i(j)$ for $t+1$ honest parties, but $C'_i(0) \neq a_i b_i$
- The corrupted parties do not complain
- Result:
 - $t+1$ honest parties do not complain
 - t corrupted parties do not complain
 - t honest parties complain
- The polynomial is accepted
Our Solution: F_{eval}

$f(1) \quad f(2) \quad f(3) \quad \text{degree-t} \quad f(n-2) \quad f(n-1) \quad f(n)$

$f(k) \quad f(k) \quad f(k) \quad f(k) \quad f(k) \quad f(k) \quad f(k)$
For each complaining party P_k – the parties check if its complaint is fake or legitimate:

- Invoke f_{eval} on the shares of $A_i(x)$ and receive $A_i(k)$
- Invoke f_{eval} on the shares of $B_i(x)$ and receive $B_i(k)$
- ...
- The values $C'_i(k), A_i(k), B_i(k), D_1(k), \ldots, D_t(k)$ become public
- The parties compute $C_i(k)$, and compare it to $C'_i(k)$
 - If $C_i(k) = C'_i(k)$: the complaint is fake
 - If $C_i(k) \neq C'_i(k)$: the complaint is legitimate

If there is one legitimate complaint – reject
A New Constant-Round Multiplication Protocol

Utilizing Bivariate Sharing for Simplicity and Efficiency
Verifiable Secret Sharing

\[g(x) \]

\[g_1(x) \]
\[g_2(x) \]
\[g_3(x) \]
\[g_{n-2}(x) \]
\[g_{n-1}(x) \]
\[g_n(x) \]

\[f(x) \]

\[f_1(x) \]
\[f_2(x) \]
\[f_3(x) \]
\[f_{n-2}(x) \]
\[f_{n-1}(x) \]
\[f_n(x) \]

\[f(0) = s \]

\[P_1 \]
\[P_2 \]
\[P_3 \]
\[P_{n-2} \]
\[P_{n-1} \]
\[P_n \]
But...

Sub-Sharing for free!
The invariant is changed: univariate --> bivariate
Sub-sharing for free – no need for robust sub-sharing
\texttt{feval} and other tools are much more efficient and simpler
 ◦ All the constructions become simpler
 ◦ including the proof of security
But maintaining the invariant requires some work
Reduced the communication complexity of BGW by quadratic factor
 ◦ Best constant-round multiplication protocol (by a linear factor)
 ◦ Incomparable to player elimination techniques that have lower communication complexity but higher round complexity
Summary

- We study perfect multiplication
- We filled a missing gap in the BGW protocol
- A full proof of security
- A simpler construction
 - more efficient
 - and simpler

Thank You!