
Memory Delegation

 Kai-Min Chung Feng-Hao Liu .
 Cornell University Brown University .

Yael Kalai Ran Raz.
 Microsoft Research Weizmann Inst. of Science .

1

Delegation of Computation

• Emerging scenarios

– Amazon, Gogrid, SETI@Home, Folding@Home, etc…

𝐹, 𝑥

𝑦

Can you evaluate
function F on

input x for me?

Sure! The answer
is y = F(x).

I’d like to verify
the answer!

Here is a proof 𝜋

𝜋

Delegator Worker

Accept / Reject
2

Important Properties
• Computational Efficiency

– verification must be faster than computation

– want small overhead for the worker

• Interaction
– can the proofs be non-interactive ?

• Generality
– can we delegate all functions?

• Assumptions
– what assumptions do we need?

 𝑛: length of input 𝑥

𝑇: time complexity of 𝐹

𝐹, 𝑥

𝑦

𝜋
Accept / Reject

Delegator Worker

3

Holy Grail of Comp. Delegation

𝑛: length of input 𝑥, 𝑇: time complexity of 𝐹

𝐹, 𝑥

𝑦, 𝜋

W

• Completeness: D accepts correct 𝑦, 𝜋 w.p. 1

• Soundness: ∀ poly(𝑇)-time W*,

 Pr[D accepts wrong answer] ≤ ngl

poly(𝑛) time poly(𝑇) time

Accept / Reject

4

general func

non-interactive proof

Previous Results on Comp. Del.

All above results are efficient, but require assumptions

(*) W* is not allowed to learn the decision bits of D

Results Trade-offs

GKR scheme
[GKR ’08, KR ‘09]

Universal Arguments
[K ’92,M ’94,BG ‘02]

Offline/Online
[GGP ‘10, CKV ’10, AIK’10]

Non-interactive proofs 
For low-depth functions 

4-message interactive proofs 
For general functions 

With (inefficient) offline preprocessing 
Non-interactive & for general functions* 

5

The Goal of Delegation

• Holy grail of computation delegation:

– Can we achieve efficient and non-interactive
computation delegation for general functions under
reasonable assumptions ?

• We don’t know the answer to this question yet.
But we want more!

Delegator runs

in O(𝑛) time

Delegator should run

in o(𝑛) time !
6

When data 𝑥 is large and in the cloud…

𝑁: length of input 𝑥, 𝑇: time complexity of 𝐹

𝐹

𝑦, 𝜋

W
𝑥 = All e−mails 𝑥 = All e−mails

How many emails
have Bob sent me

last month?

100!
Here is a proof 𝜋

Cert(x)

o(𝑁) time

Can D delegate the data 𝑥 as well,

only keep Cert(𝑥) & verify in 𝑜(𝑁) time?

Yes, we can!

Memory Delegation

Streaming Delegation

7

http://compixels.com/wp-content/uploads/2011/04/Gmail-logo.jpg

Our Main Results

GKR Scheme & Universal Argument

as Computation Delegation Schemes

GKR Scheme & Universal Argument

as Memory/Streaming Delegation Schemes

8

Outline

• Computation Delegation

• Memory Delegation

• Streaming Delegation

• Conclusion

9

Memory Delegation

W Cert(x)

Memory x

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

• Initial memory 𝑥 holds by delegator D

• D computes a certificate Cert(𝑥)

• D sends 𝑥 to worker W

10

Compute Operation

W Cert(x)

Memory x

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Compute(𝐹)

𝑦, 𝜋

Accept / Reject

• D can verify 𝜋 using certificate Cert(𝑥)

• Efficiency: D should run in time polylog(N,T)

• W should run in time poly(T)

polylog(𝑁, 𝑇) time poly(𝑇) time

11

Update Operation

W Cert(x)

Memory x

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

Can you update
the memory to
𝐺(𝑥) for me?

Sure, and here is
the update info 𝜋

 Update(𝐺)

𝜋

Accept / Reject

polylog(𝑁, 𝑇) time

• Allow D sends a general update function 𝐺 to W

• Allow W help D update certificate

• Efficiency: D should run in time polylog(N,T)

• W should run in time poly(T)

Memory G(x)

G(x)[1]

G(x)[2]

G(x)[3]

G(x)[4]

G(x)[5]

G(x)[6]

G(x)[7]

G(x)[8]

⇒

Cert(G(x))
⇓

poly(𝑇) time

12

Desired Properties
• Efficiency

– D runs in time polylog(N,T)

– W runs in time poly(T)

• Completeness: D always accepts when W honest

• Reusable Soundness: soundness game for D and W*

– W∗ can chooses inputs of D during interaction

– W∗ learns the decision of D

– W∗ wins if D ever accepts mistakenly

– ∀ poly(T)-time W* can win with negligible probability

𝑁: length of memory 𝑥, 𝑇: time complexity of 𝐹, 𝐺 13

Issue of Reusability

• D uses cert(x) to compute his decision

⇒ one bit leakage info about cert(x) per input

• Our memory scheme has public cert(x)

– Simple!

• Our streaming scheme has secret cert(x)
– Challenging! Take ideas from continual-leakage model.

– New geometric lemma “dual” to [BKKV ‘10]

– New entropy lemma for lower bounding

conditional computational entropy
14

Our Memory Delegation Schemes

Our Schemes Property

Based on
GKR scheme

Based on
Universal Arguments

Non-interactive proofs 
For low-depth functions 

4-message interactive proofs 
For general functions 

Under cryptographic assumptions*, we obtain

 efficient memory delegation schemes with

(*) Based on the same assumptions as the corresponding schemes
15

Outline

• Computation Delegation

• Memory Delegation

• Streaming Delegation

• Conclusion

16

Example: Streaming of Stock Ticks

0.1 -0.4 0.1 0.1 0.2 -0.1
Should I buy

the stock now?

17

…

Comparison to Memory Delegation

• Data stream arrives constantly at a high rate

⇒ Ideally, D should update certificate by himself

• Luckily we can!

–every update simply appends a data item 𝑥𝑡

• Different from memory delegation
– Recall update for memory delegation is general

– D gets help from W

18

Our Streaming Delegation Schemes

Our Schemes Property

Based on
GKR scheme

Based on
Universal Arguments

Non-interactive proofs 
For low-depth functions 

4-message interactive proofs 
For general functions 

Assume the existence of

 fully homomorphic encryption schemes [G ’09]

19

Outline

• Computation Delegation

• Memory Delegation

• Streaming Delegation

• Conclusion

20

Conclusion

• We construct efficient memory/streaming
delegation schemes

– non-interactive for low depth functions

– 4-message for general functions

• Can we achieve the holy grail of
computation/memory/ streaming delegation?

– efficient and non-interactive schemes for general
functions

21

Thanks you!

22

