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 Can elections, auctions, statistical analysis of 
distributed parties’ data really be carried out 
using secure computation? 

 

 Does our model of secure computation really 
model the needs of these applications? 
◦ And I’m not talking about efficiency concerns… 



 In all known protocols, all parties must 
interact simultaneously 

 

 Arguably, this is a huge obstacle to adoption 
◦ A department wants to carry out a faculty tenure 

vote using a secure protocol 

 When do they run the protocol? 

◦ A website wishes to securely aggregate statistics 
about users 

 Each user gives her information only when connected 



 The secure computation model: 



 The real-world web model: 



 Can secure computation be made non-
simultaneous? 
◦ A natural theoretical question 

 Deepens our understanding of the required 
communication model for secure computation 

◦ Important ramifications to practice 

 Especially if this can be done efficiently 

 

 

 

 Note: fully homomorphic encryption does not solve the problem 



 Parties 
◦ One server 𝑺 

◦ 𝒏 parties 𝑷𝟏, … , 𝑷𝒏 
 

 Communication model 
◦ Each party interacts with the server exactly once 

 In all of our protocols, this interaction is a single 
message from the server to the party and back, but this 
is not essential to the model 

◦ At the end, the server obtains the output 
 

 A protocol for this setting is called one pass 



 Since the protocol is one-pass, the 
computation carried out by 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 
is of the residual function   
  𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏 = 𝒇(𝒙𝟏, … , 𝒙𝒊, 𝒙𝒊+𝟏, … , 𝒙𝒏) 

 

 If 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 are all corrupted and 
colluding, they can compute 𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏  
and 𝒈𝒊 𝒙′𝒊+𝟏, … , 𝒙′𝒏  and so on, on many inputs 
◦ This is not allowed in classic secure computation 

but is inherent to the one-pass model 



 A decomposition of a function 𝒇 𝒙𝟏, … , 𝒙𝒏  is a 
series of 𝒏 two-input functions 𝒇𝟏, … 𝒇𝒏 such 
that 𝒇𝒏 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒏 = 𝒇 𝒙𝟏, … , 𝒙𝒏  
◦ In the one-pass setting 𝑷𝒊 (and 𝑺) compute 𝒇𝒊 and 

pass on the result 

◦ If 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 are all corrupted and colluding, 
then they learn the value 𝒇𝒊 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒊  

 



 How much does 𝒇𝒊 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒊  reveal? 

 

 If it reveals nothing more than what can be 
computed by the residual function   
  𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏 = 𝒇(𝒙𝟏, … , 𝒙𝒊, 𝒙𝒊+𝟏, … , 𝒙𝒏)     
then it is minimal disclosure 

 

 

 

 

 



 Define 𝒇𝟏 𝒙𝟏 = 𝒙𝟏, 𝒇𝟐 𝒚𝟏, 𝒙𝟐 = 𝒚𝟏, 𝒙𝟐 = (𝒙𝟏, 𝒙𝟐), 
and so on (all are identity functions), and 𝒇𝒏 = 𝒇 
◦ If 𝑷𝒏 and 𝑺 are corrupted, all is revealed 

 

 Consider the SUM function and define   
   𝒇𝒊 𝒚𝒊−𝟏, 𝒙𝒊 = 𝒚𝒊−𝟏 + 𝒙𝒊 
◦ Given 𝒚𝒊 can learn nothing more than sum of first 𝒊 

◦ But this is computable from the residual function 

◦ This is minimal disclosure 



 We follow the real/ideal simulation paradigm 

 Security is formalized as in the standard 
setting with one exception 
◦ If the server is corrupted, then the adversary is 

given 𝒇𝒊(𝒙𝟏, … , 𝒙𝒊) where 𝑷𝒊 is the last honest party 

 

 A protocol one-pass securely computes a 
decomposition if there exists an ideal simulator 
such that real and ideal are indistinguishable 
◦ The protocol is optimally private if the decomposition is 

minimum disclosure 



 Can this notion be achieved? 

 If yes, 
◦ Under what assumptions? 

◦ At what cost? 



 Binary symmetric functions 
◦ Depend only on Hamming weight of input 

◦ E.g., AND, OR, PARITY, MAJORITY 

 Concise truth table representation 
◦ Example: the MAJORITY function over 5 bits 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 

In general, this 
contains the 

function output 
on the relevant 

weight 



 Define 𝒚𝟏 = 𝒇𝟏 𝒙𝟏  to be the truth table, with 
the 1st row erased if 𝒙𝟏 = 𝟏 and the last row 
erased if 𝒙𝟏 = 𝟎 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 

𝒙𝟏 = 𝟏 

𝒙𝟏 = 𝟎 



 Define 𝒇𝟐 𝒚𝟏, 𝒙𝟐  to be the truncated truth table, 
with the last remaining row erased if 𝒙𝟐 = 𝟎 and 
the first row erased if 𝒙𝟐 = 𝟏 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 

𝒙𝟐 = 𝟏 

𝒙𝟏 = 𝟎 



 And so on… 
◦ Note, each truth table can be efficiently computed 

from the previous one 

 

 

 

 

 

 

 

 
◦ Indeed, the output of 𝑴𝑨𝑱(𝟎𝟏𝟏𝟎𝟎) = 𝟎 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 

𝒙𝟐 = 𝟏 

𝒙𝟏 = 𝟎 

𝒙𝟑 = 𝟏 

𝒙𝟒 = 𝟎 

𝒙𝟓 = 𝟎 



 

 Why is this minimum disclosure? 
◦ The truth table reveals nothing more than the 

output of the function on the remaining inputs 

 



 Main tool – layer rerandomizable encryption 

◦ Denote 𝑬𝒑𝒌(𝒙; 𝒓) and    

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝟏, … , 𝒓𝒏+𝟏 = 𝑬𝒑𝒌𝟏 ⋯𝑬𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝒏+𝟏 ⋯ ; 𝒓𝟏  

◦ This is layer rerandomizable if there exists an 
efficient procedure that rerandomizes all layers (given 
public keys) 

◦ This can be constructed from any rerandomizable 
encryption, and highly efficiently  from ElGamal 

 

 Note: all protocols assume PKI (essential here) 



 Server 𝑺 encrypts the truth table under all 
parties’ keys 
◦ Using rerandomizable layer encryption 

 For 𝒊 = 𝟏,… , 𝒏 (but in any order) 
◦ Party 𝑷𝒊 retrieves current truth table from the server 

◦ 𝑷𝒊 removes the first or last remaining row, decrypts 
under its key, rerandomizes every entry of the truth 
table, and sends to 𝑺  

 After all parties conclude, all that remains is a 
single row, which is the output 



 Majority function with 5 parties 

Hamming 
Weight 

Output 

0 0 

1 0 

2 0 

3 1 

4 1 

5 1 



 The server 𝑺 computes the encrypted concise truth 
table (𝒑𝒌𝟔 is the server’s public-key) 

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  



 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  



 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases, removes its key 
and rerandomizes 

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔  



𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔  

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔  

 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases 



 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases, removes its key 
and rerandomizes 

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔  



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔  

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases 



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases, removes its key 
and rerandomizes 



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases 



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔  

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases, removes its key 
and rerandomizes 



𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏  

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔  

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔  

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔  

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔  

 A corrupted 𝑷𝟓 colluding with a corrupted 
server know that the first 4 parties were 
divided evenly, but nothing else 



 If server is honest, no one learns anything 

 If server is corrupt, it cannot decrypt anything 
which is still encrypted under an honest 
party’s public-key 
◦ Security level achieved when last few parties are 

corrupted is the same as if they just didn’t 
participate to start with 

 Rerandomization ensures that the row 
removed is not learned 

  



 Each party computes on average about 𝟑𝒏 𝟐  
exponentiations 
◦ We can do 𝟏𝟎𝟎𝟎 − 𝟐𝟎𝟎𝟎 exponentiations per second, 

making this protocol practical even for thousands of 
users (unless many come at the same time) 

 For malicious adversaries 
◦ Need to add digital signatures and ZK proofs (these 

are just Diffie-Hellman tuple proofs) 

◦ The concrete cost is less than 𝟖𝒏𝟐 (with Fiat-Shamir) 

◦ This is still practical for not too many parties 

 About 10 seconds for 40 parties (tenure example) 



 Highly efficient optimally private protocols for: 
◦ Symmetric functions over ℤ𝒄 

◦ Sum function over large domain 

◦ Selection functions 
 

 A general feasibility result:  

◦ Any decomposition 𝒇𝟏, … , 𝒇𝒏 can be securely 
computed, under the DDH assumption (and NIZK 
for malicious) 
 

◦ This can be used for any decomposition (minimal or not) 

 The actual security derived depends on the decomposition 

 Minimal is best; if not, then it depends on the application 

 

 

 



 Fully interactive secure computation is a problem 
in practice 
◦ A one-pass client/server protocol is essential for many 

applications, and is also interesting from a theoretical 
point of view 

 Our results 
◦ Introduced the model and definitions 

◦ Studied inherent limitations and use function 
decomposition to model this 

◦ Constructed highly efficient and practical protocols exist 
for many natural problems in this setting 

◦ Proved general feasibility for any decomposition 


