
Shai Halevi, IBM T.J. Watson

Yehuda Lindell, Bar-Ilan University

Benny Pinkas, Bar-Ilan University

 Can elections, auctions, statistical analysis of
distributed parties’ data really be carried out
using secure computation?

 Does our model of secure computation really
model the needs of these applications?
◦ And I’m not talking about efficiency concerns…

 In all known protocols, all parties must
interact simultaneously

 Arguably, this is a huge obstacle to adoption
◦ A department wants to carry out a faculty tenure

vote using a secure protocol

 When do they run the protocol?

◦ A website wishes to securely aggregate statistics
about users

 Each user gives her information only when connected

 The secure computation model:

 The real-world web model:

 Can secure computation be made non-
simultaneous?
◦ A natural theoretical question

 Deepens our understanding of the required
communication model for secure computation

◦ Important ramifications to practice

 Especially if this can be done efficiently

 Note: fully homomorphic encryption does not solve the problem

 Parties
◦ One server 𝑺

◦ 𝒏 parties 𝑷𝟏, … , 𝑷𝒏

 Communication model
◦ Each party interacts with the server exactly once

 In all of our protocols, this interaction is a single
message from the server to the party and back, but this
is not essential to the model

◦ At the end, the server obtains the output

 A protocol for this setting is called one pass

 Since the protocol is one-pass, the
computation carried out by 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺
is of the residual function
 𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏 = 𝒇(𝒙𝟏, … , 𝒙𝒊, 𝒙𝒊+𝟏, … , 𝒙𝒏)

 If 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 are all corrupted and
colluding, they can compute 𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏
and 𝒈𝒊 𝒙′𝒊+𝟏, … , 𝒙′𝒏 and so on, on many inputs
◦ This is not allowed in classic secure computation

but is inherent to the one-pass model

 A decomposition of a function 𝒇 𝒙𝟏, … , 𝒙𝒏 is a
series of 𝒏 two-input functions 𝒇𝟏, … 𝒇𝒏 such
that 𝒇𝒏 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒏 = 𝒇 𝒙𝟏, … , 𝒙𝒏
◦ In the one-pass setting 𝑷𝒊 (and 𝑺) compute 𝒇𝒊 and

pass on the result

◦ If 𝑷𝒊+𝟏, … , 𝑷𝒏 and 𝑺 are all corrupted and colluding,
then they learn the value 𝒇𝒊 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒊

 How much does 𝒇𝒊 ⋯𝒇𝟐 𝒇𝟏 𝒙𝟏 , 𝒙𝟐 ⋯𝒙𝒊 reveal?

 If it reveals nothing more than what can be
computed by the residual function
 𝒈𝒊 𝒙𝒊+𝟏, … , 𝒙𝒏 = 𝒇(𝒙𝟏, … , 𝒙𝒊, 𝒙𝒊+𝟏, … , 𝒙𝒏)
then it is minimal disclosure

 Define 𝒇𝟏 𝒙𝟏 = 𝒙𝟏, 𝒇𝟐 𝒚𝟏, 𝒙𝟐 = 𝒚𝟏, 𝒙𝟐 = (𝒙𝟏, 𝒙𝟐),
and so on (all are identity functions), and 𝒇𝒏 = 𝒇
◦ If 𝑷𝒏 and 𝑺 are corrupted, all is revealed

 Consider the SUM function and define
 𝒇𝒊 𝒚𝒊−𝟏, 𝒙𝒊 = 𝒚𝒊−𝟏 + 𝒙𝒊
◦ Given 𝒚𝒊 can learn nothing more than sum of first 𝒊

◦ But this is computable from the residual function

◦ This is minimal disclosure

 We follow the real/ideal simulation paradigm

 Security is formalized as in the standard
setting with one exception
◦ If the server is corrupted, then the adversary is

given 𝒇𝒊(𝒙𝟏, … , 𝒙𝒊) where 𝑷𝒊 is the last honest party

 A protocol one-pass securely computes a
decomposition if there exists an ideal simulator
such that real and ideal are indistinguishable
◦ The protocol is optimally private if the decomposition is

minimum disclosure

 Can this notion be achieved?

 If yes,
◦ Under what assumptions?

◦ At what cost?

 Binary symmetric functions
◦ Depend only on Hamming weight of input

◦ E.g., AND, OR, PARITY, MAJORITY

 Concise truth table representation
◦ Example: the MAJORITY function over 5 bits

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

In general, this
contains the

function output
on the relevant

weight

 Define 𝒚𝟏 = 𝒇𝟏 𝒙𝟏 to be the truth table, with
the 1st row erased if 𝒙𝟏 = 𝟏 and the last row
erased if 𝒙𝟏 = 𝟎

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

𝒙𝟏 = 𝟏

𝒙𝟏 = 𝟎

 Define 𝒇𝟐 𝒚𝟏, 𝒙𝟐 to be the truncated truth table,
with the last remaining row erased if 𝒙𝟐 = 𝟎 and
the first row erased if 𝒙𝟐 = 𝟏

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

 And so on…
◦ Note, each truth table can be efficiently computed

from the previous one

◦ Indeed, the output of 𝑴𝑨𝑱(𝟎𝟏𝟏𝟎𝟎) = 𝟎

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

𝒙𝟐 = 𝟏

𝒙𝟏 = 𝟎

𝒙𝟑 = 𝟏

𝒙𝟒 = 𝟎

𝒙𝟓 = 𝟎

 Why is this minimum disclosure?
◦ The truth table reveals nothing more than the

output of the function on the remaining inputs

 Main tool – layer rerandomizable encryption

◦ Denote 𝑬𝒑𝒌(𝒙; 𝒓) and

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝟏, … , 𝒓𝒏+𝟏 = 𝑬𝒑𝒌𝟏 ⋯𝑬𝒑𝒌𝒏+𝟏 𝒙; 𝒓𝒏+𝟏 ⋯ ; 𝒓𝟏

◦ This is layer rerandomizable if there exists an
efficient procedure that rerandomizes all layers (given
public keys)

◦ This can be constructed from any rerandomizable
encryption, and highly efficiently from ElGamal

 Note: all protocols assume PKI (essential here)

 Server 𝑺 encrypts the truth table under all
parties’ keys
◦ Using rerandomizable layer encryption

 For 𝒊 = 𝟏,… , 𝒏 (but in any order)
◦ Party 𝑷𝒊 retrieves current truth table from the server

◦ 𝑷𝒊 removes the first or last remaining row, decrypts
under its key, rerandomizes every entry of the truth
table, and sends to 𝑺

 After all parties conclude, all that remains is a
single row, which is the output

 Majority function with 5 parties

Hamming
Weight

Output

0 0

1 0

2 0

3 1

4 1

5 1

 The server 𝑺 computes the encrypted concise truth
table (𝒑𝒌𝟔 is the server’s public-key)

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟎; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

 𝑷𝟏 with input 𝒙𝟏 = 𝟎 erases, removes its key
and rerandomizes

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝟔 𝟏; 𝒓𝟏, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟎; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

𝑬𝒑𝒌𝟐,…,𝒑𝒌𝟔 𝟏; 𝒓𝟐, … , 𝒓𝟔

 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases

 𝑷𝟐 with input 𝒙𝟐 = 𝟏 erases, removes its key
and rerandomizes

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟏; 𝒓𝟑, … , 𝒓𝟔

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 𝑷𝟑 with input 𝒙𝟑 = 𝟏 erases, removes its key
and rerandomizes

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟎; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 𝑷𝟒 with input 𝒙𝟒 = 𝟎 erases, removes its key
and rerandomizes

𝑬𝒑𝒌𝟏,…,𝒑𝒌𝒏+𝟏 𝟎; 𝒓𝟏, … , 𝒓𝒏+𝟏

𝑬𝒑𝒌𝟑,…,𝒑𝒌𝟔 𝟎; 𝒓𝟑, … , 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟎; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟓,𝒑𝒌𝟔 𝟏; 𝒓𝟓, 𝒓𝟔

𝑬𝒑𝒌𝟒,…,𝒑𝒌𝟔 𝟏; 𝒓𝟒, … , 𝒓𝟔

 A corrupted 𝑷𝟓 colluding with a corrupted
server know that the first 4 parties were
divided evenly, but nothing else

 If server is honest, no one learns anything

 If server is corrupt, it cannot decrypt anything
which is still encrypted under an honest
party’s public-key
◦ Security level achieved when last few parties are

corrupted is the same as if they just didn’t
participate to start with

 Rerandomization ensures that the row
removed is not learned

 Each party computes on average about 𝟑𝒏 𝟐
exponentiations
◦ We can do 𝟏𝟎𝟎𝟎 − 𝟐𝟎𝟎𝟎 exponentiations per second,

making this protocol practical even for thousands of
users (unless many come at the same time)

 For malicious adversaries
◦ Need to add digital signatures and ZK proofs (these

are just Diffie-Hellman tuple proofs)

◦ The concrete cost is less than 𝟖𝒏𝟐 (with Fiat-Shamir)

◦ This is still practical for not too many parties

 About 10 seconds for 40 parties (tenure example)

 Highly efficient optimally private protocols for:
◦ Symmetric functions over ℤ𝒄

◦ Sum function over large domain

◦ Selection functions

 A general feasibility result:

◦ Any decomposition 𝒇𝟏, … , 𝒇𝒏 can be securely
computed, under the DDH assumption (and NIZK
for malicious)

◦ This can be used for any decomposition (minimal or not)

 The actual security derived depends on the decomposition

 Minimal is best; if not, then it depends on the application

 Fully interactive secure computation is a problem
in practice
◦ A one-pass client/server protocol is essential for many

applications, and is also interesting from a theoretical
point of view

 Our results
◦ Introduced the model and definitions

◦ Studied inherent limitations and use function
decomposition to model this

◦ Constructed highly efficient and practical protocols exist
for many natural problems in this setting

◦ Proved general feasibility for any decomposition

