Secure Computation on the
Web: Computing without
Simultaneous Interaction

Shai Halevi, IBM T.J. Watson
Yehuda Lindell, Bar-llan University
Benny Pinkas, Bar-llan University




My Standard First Slide

Secure Computation

» A set of parties with private inputs

» Parties wish to jointly compute a function of
their inputs so that certain security properties
(like privacy, correctness and independence
of inputs) are preserved

» Properties must be ensured even if some of
the parties attack the protocol

» Models any problem:
- Elections, auctions, private statistical analysis,...




A Question

» Can elections, auctions, statistical analysis of
distributed parties’ data really be carried out
using secure computation?

» Does our model of secure computation really
model the needs of these applications?
- And I’'m not talking about efficiency concerns...




A Big Problem

» In all known protocols, all parties must
interact simultaneously

» Arguably, this is a huge obstacle to adoption
- A department wants to carry out a faculty tenure
vote using a secure protocol
- When do they run the protocol?

- A website wishes to securely aggregate statistics
about users

- Each user gives her information only when connected




Stated Differently

» The secure computation model:




Stated Differently

» The real-world web model:




An Important Question

» Can secure computation be made non-
simultaneous?

- A natural theoretical question

- Deepens our understanding of the required
communication model for secure computation

> Important ramifications to practice
- Especially if this can be done efficiently

» Note: fully homomorphic encryption does not solve the problem




Our Model

» Parties
- One server §
> n parties Pq,..., P,

» Communication model

- Each party interacts with the server exactly once

- In all of our protocols, this interaction is a single
message from the server to the party and back, but this
is not essential to the model

- At the end, the server obtains the output

» A protocol for this setting is called one pass




Residual Function Computation

» Since the protocol is one-pass, the
computation carried out by P;.4,...,P, and S
is of the residual function

gi(xi+1' "'an) — f(xl; vy Xip Xjt 1, "'an)

» If P;,4,...,P, and S are all corrupted and
colluding, they can compute g;(x;., ..., x,,)
and g;(x';;41, ..., x',) and so on, on many inputs
> This is not allowed in classic secure computation

but is inherent to the one-pass model




Function Decomposition

» A decomposition of a function f(x4,...,x,) is a
series of n two-input functions f;, ... f,, such

that (- f2(f1(x1), x2) - x3) = f(xq, ..., x3)

> In the one-pass setting P; (and S) compute f; and
pass on the result

> If Pi1q,...,P, and § are all corrupted and colluding,
then they learn the value f;(:-- f2(f1(x1), x3) --- x;)




Minimal Disclosure Decomposition

» How much does f;(:- fo(f1(x1), x5) --- x;) reveal?

» If it reveals nothing more than what can be
computed by the residual function

g_i()_ci+1' an) =_f(x11 s Xip Xit 1) "'an)
then it is minimal disclosure




Examples

Define f1(x1) = x1, f2(y1, x2) = (¥1, x2) = (x4, x2),
and so on (all are identity functions), and f, = f
- If P, and S are corrupted, all is revealed

v

» Consider the SUM function and define
fii-1, %) =Yi-1 + x;
> Given y; can learn nothing more than sum of first i
> But this is computable from the residual function
> This is minimal disclosure




Definition of Security

» We follow the real/ideal simulation paradigm
» Security is formalized as in the standard

setting with one exception

- |f the server is corrupted, then the adversary is
given f;(x4,...,x;) where P; is the last honest party

» A protocol one-pass securely computes a
decomposition if there exists an ideal simulator
such that real and ideal are indistinguishable

> The protocol is optimally private if the decomposition is
minimum disclosure




Questions

» Can this notion be achieved?
» If yes,

- Under what assumptions?
- At what cost?




Practical Optimal Protocols

» Binary symmetric functions

- Depend only on Hamming weight of input
- E.g., AND, OR, PARITY, MAJORITY

» Concise truth table representation
- Example: the MAJORITY function over 5 bits

Hamming
Weight

0

contains the
0 function output
0 on the relevant
1
1
1

weight




Minimum Disclosure Decomposition
for Binary Symmetric
» Define y; = f1(x,) to be the truth table, with
the 15t row erased if x; = 1 and the last row
erased if x; =0
Mg’ | ou

0
0
1
1

A W N —




Minimum Disclosure Decomposition
for Binary Symmetric
» Define f,(y4,x,) to be the truncated truth table,
with the last remaining row erased if x, = 0 and
the first row erased if x, =1
g | oum

0
0
1
1

A W N —




Minimum Disclosure Decomposition
for Binary Symmetric

» And so on...

- Note, each truth table can be efficiently computed
from the previous one

Mg | owen

Weight
————— X = 1
_]_O_xg,:l

2 0

————————— X5 = ()
————————— X1 = ()
——————————————————— X1 = 0

=lndeed, the output of MAJ(01100) =0

\ §
AN A\
W\ N\
\\ \\\
iz A\
EX: AN



Minimum Disclosure Decomposition
for Binary Symmetric

» Why is this minimum disclosure?

> The truth table reveals nothing more than the
output of the function on the remaining inputs




Practical Optimal Protocol for
Binary Symmetric Functions

» Main tool - layer rerandomizable encryption
- Denote E i (x; 1) and

Epkl,...,pkn+1 (x; ry ..., rn+1) = Epkl('” Epkn+1 (x; rn+1) "t 1‘1)
> This is layer rerandomizable if there exists an
efficient procedure that rerandomizes all layers (given
public keys)
> This can be constructed from any rerandomizable
encryption, and highly efficiently from ElGamal

» Note: all protocols assume PKI (essential here)




The Protocol (Semi-Honest)

» Server S encrypts the truth table under all
parties’ keys
- Using rerandomizable layer encryption
» Fori=1,..,n (but in any order)
- Party P; retrieves current truth table from the server
- P; removes the first or last remaining row, decrypts
under its key, rerandomizes every entry of the truth
table, and sends to §
» After all parties conclude, all that remains is a

single row, which is the output




Example

» Majority function with 5 parties

Hamming

0 0
1 0
2 0
3 1
4 1
5 1




Example - MAJORITY

» The server S computes the encrypted concise truth
table (pkg is the server’s public-key)

Epkl,...,pk6 (01 rl, 200 ) r6)

Epkl,...,pk6 (0, ry ..., r6)

Epkl,...,pk6 (O; rl) 300 r6)
Epk1,...,pk6 (1; ry .., r6)

Epkl,...,pk6 (17 ry ..., r6)

E

pkq,...pke (1;74,...,T6)




Example - MAJORITY
» Py with input x; = 0 erases

Epk,,..pks (071, ..., T6)
Epk,,..pks(0;71, ..., T6)
Epk,,.pko(0;T1, ..., T6)
pky,..pkg (1;T1, -, T6)

pkq,...pke (1r ry ..., r6)




Example - MAJORITY

» Py with input x; = 0 erases, removes its key
and rerandomizes

Epkz,...,pk6 (07 rZ) 200 g r6)
Epkz,...,pk6 (O, ra, .., rﬁ)
pka,...pkg (01 ra, .., r6)

Epkz,...,pk6 (11 rz: SN r6)

E

pky,...pkg (1r ra, .., r6)




Example - MAJORITY

» P, with input x, = 1 erases

Epkz,...,pk6 (0, ra, .., r6)
Epkz,...,pk6 (0; rz: 200 r6)
pkz,...,pk6 (1 rz: Ty r6)

pkz,...,pk6(1 rz: SEEN) r6)




Example - MAJORITY

» P, with input x, = 1 erases, removes its key
and rerandomizes

Epkg,...,pk6 (O, rs,.., r6)
pks,...pke (0;73,...,76)
pks,...pkg (1 rs,.., r6)

pks,...pkg (1 rs,.., r6)




Example - MAJORITY

» P3 with input x3 = 1 erases

Epkg,...,pk6 (0; r3; 00 r6)

Epkg pk6(1 rs, ---:r6)

E

pks,.. pk6(1 r3, ---;r6)




Example - MAJORITY

» P3; with input x3 = 1 erases, removes its key
and rerandomizes

Epk4,...,pk6 (0; r4-; eny rﬁ)
Epk4,...,pk6 (11 r4—1 0o r6)

Epk4,...,pk6 (1r Ty, ..., r6)




Example - MAJORITY

» P, with input x, = 0 erases

Epk4,...,pk6 (0; r4-; 300 r6)

Epk4,...,pk6 (17 r4-; SN r6)




Example - MAJORITY

» P, with input x, = 0 erases, removes its key
and rerandomizes

Epks,pk6 (01 rs, r6)

Epks,pk6 (1;75,76)




Example

» A corrupted P: colluding with a corrupted
server know that the first 4 parties were
divided evenly, but nothing else

Epks,pk6 (01 rs, r6)

Epk5,pk6 (1;75,76)




Security

» If server is honest, no one learns anything

» If server is corrupt, it cannot decrypt anything
which is still encrypted under an honest
party’s public-key
- Security level achieved when last few parties are

corrupted is the same as if they just didn'’t
participate to start with

» Rerandomization ensures that the row
removed is not learned




Concrete Cost

» Each party computes on average about 3%/,
exponentiations

- We can do 1000 — 2000 exponentiations per second,
making this protocol practical even for thousands of
users (unless many come at the same time)

» For malicious adversaries

- Need to add digital signatures and ZK proofs (these
are just Diffie-Hellman tuple proofs)

- The concrete cost is less than 8n? (with Fiat-Shamir)
> This is still practical for not too many parties
- About 10 seconds for 40 parties (tenure example)




More Results

» Highly efficient optimally private protocols for:
> Symmetric functions over Z,
> Sum function over large domain
- Selection functions

» A general feasibility result:

- Any decomposition f4, ..., f,, can be securely
computed, under the DDH assumption (and NIZK
for malicious)

> This can be used for any decomposition (minimal or not)
- The actual security derived depends on the decomposition
- Minimal is best; if not, then it depends on the application




Summary

» Fully interactive secure computation is a problem
In practice
- A one-pass client/server protocol is essential for many

applications, and is also interesting from a theoretical
point of view

» Our results
> Introduced the model and definitions

> Studied inherent limitations and use function
decomposition to model this

- Constructed highly efficient and practical protocols exist
for many natural problems in this setting

> Proved general feasibility for any decomposition




