Secure Computation on the Web: Computing without Simultaneous Interaction

Shai Halevi, IBM T.J. Watson
Yehuda Lindell, Bar–Ilan University
Benny Pinkas, Bar–Ilan University
Secure Computation

- A set of parties with private inputs
- Parties wish to jointly compute a function of their inputs so that certain security properties (like privacy, correctness and independence of inputs) are preserved
- Properties must be ensured even if some of the parties attack the protocol

- Models any problem:
 - Elections, auctions, private statistical analysis, …
A Question

- Can elections, auctions, statistical analysis of distributed parties’ data really be carried out using secure computation?

- Does our model of secure computation really model the needs of these applications?
 - And I’m not talking about efficiency concerns…
A Big Problem

- In all known protocols, all parties must interact simultaneously.

- Arguably, this is a huge obstacle to adoption:
 - A department wants to carry out a faculty tenure vote using a secure protocol:
 - When do they run the protocol?
 - A website wishes to securely aggregate statistics about users:
 - Each user gives her information only when connected.
Suggested Differently

- The secure computation model:
Stated Differently

- The real-world web model:
Can secure computation be made non-simultaneous?

- A natural theoretical question
 - Deepens our understanding of the required communication model for secure computation
- Important ramifications to practice
 - Especially if this can be done efficiently

Note: fully homomorphic encryption does not solve the problem
Our Model

- **Parties**
 - One server S
 - n parties P_1, \ldots, P_n

- **Communication model**
 - Each party interacts with the server exactly once
 - In all of our protocols, this interaction is a single message from the server to the party and back, but this is not essential to the model
 - At the end, the server obtains the output

- A protocol for this setting is called **one pass**
Since the protocol is one-pass, the computation carried out by P_{i+1}, \ldots, P_n and S is of the residual function

$$g_i(x_{i+1}, \ldots, x_n) = f(x_1, \ldots, x_i, x_{i+1}, \ldots, x_n)$$

If P_{i+1}, \ldots, P_n and S are all corrupted and colluding, they can compute $g_i(x_{i+1}, \ldots, x_n)$ and $g_i(x'_{i+1}, \ldots, x'_n)$ and so on, on many inputs.

- This is not allowed in classic secure computation but is inherent to the one-pass model.
A decomposition of a function $f(x_1, \ldots, x_n)$ is a series of n two-input functions f_1, \ldots, f_n such that $f_n(\ldots f_2(f_1(x_1), x_2) \ldots x_n) = f(x_1, \ldots, x_n)$

- In the one-pass setting P_i (and S) compute f_i and pass on the result.
- If P_{i+1}, \ldots, P_n and S are all corrupted and colluding, then they learn the value $f_i(\ldots f_2(f_1(x_1), x_2) \ldots x_i)$.
How much does $f_i(\ldots f_2(f_1(x_1), x_2) \ldots x_i)$ reveal?

If it reveals nothing more than what can be computed by the residual function

$$g_i(x_{i+1}, \ldots, x_n) = f(x_1, \ldots, x_i, x_{i+1}, \ldots, x_n)$$

then it is **minimal disclosure**
Examples

- Define $f_1(x_1) = x_1$, $f_2(y_1, x_2) = (y_1, x_2) = (x_1, x_2)$, and so on (all are identity functions), and $f_n = f$
 - If P_n and S are corrupted, all is revealed

- Consider the SUM function and define
 \[f_i(y_{i-1}, x_i) = y_{i-1} + x_i \]
 - Given y_i can learn nothing more than sum of first i
 - But this is computable from the residual function
 - This is minimal disclosure
Definition of Security

- We follow the real/ideal simulation paradigm
- Security is formalized as in the standard setting with one exception
 - If the server is corrupted, then the adversary is given $f_i(x_1, \ldots, x_i)$ where P_i is the last honest party

- A protocol one–pass securely computes a decomposition if there exists an ideal simulator such that real and ideal are indistinguishable
 - The protocol is optimally private if the decomposition is minimum disclosure
Questions

- Can this notion be achieved?
- If yes,
 - Under what assumptions?
 - At what cost?
Practical Optimal Protocols

- **Binary symmetric functions**
 - Depend only on Hamming weight of input
 - E.g., AND, OR, PARITY, MAJORITY

- **Concise truth table representation**
 - Example: the MAJORITY function over 5 bits

<table>
<thead>
<tr>
<th>Hamming Weight</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

In general, this contains the function output on the relevant weight.
Define $y_1 = f_1(x_1)$ to be the truth table, with the 1st row erased if $x_1 = 1$ and the last row erased if $x_1 = 0$.

<table>
<thead>
<tr>
<th>Hamming Weight</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

$x_1 = 1$

$x_1 = 0$
Define $f_2(y_1, x_2)$ to be the truncated truth table, with the last remaining row erased if $x_2 = 0$ and the first row erased if $x_2 = 1$.

<table>
<thead>
<tr>
<th>Hamming Weight</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

$x_2 = 1$

$x_1 = 0$
Minimum Disclosure Decomposition for Binary Symmetric

- And so on...
 - Note, each truth table can be efficiently computed from the previous one

<table>
<thead>
<tr>
<th>Hamming Weight</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

- Indeed, the output of \(\text{MAJ}(01100) = 0 \)
Why is this minimum disclosure?

- The truth table reveals nothing more than the output of the function on the remaining inputs
Main tool – layer rerandomizable encryption

- Denote $E_{pk}(x; r)$ and

 $E_{pk_1,...,pk_{n+1}}(x; r_1, ..., r_{n+1}) = E_{pk_1}(\cdots E_{pk_{n+1}}(x; r_{n+1}) \cdots ; r_1)$

- This is layer rerandomizable if there exists an efficient procedure that rerandomizes all layers (given public keys)

- This can be constructed from any rerandomizable encryption, and highly efficiently from ElGamal

Note: all protocols assume PKI (essential here)
The Protocol (Semi-Honest)

- Server S encrypts the truth table under all parties’ keys
 - Using rerandomizable layer encryption
- For $i = 1, \ldots, n$ (but in any order)
 - Party P_i retrieves current truth table from the server
 - P_i removes the first or last remaining row, decrypts under its key, rerandomizes every entry of the truth table, and sends to S
- After all parties conclude, all that remains is a single row, which is the output
Example

- Majority function with 5 parties

<table>
<thead>
<tr>
<th>Hamming Weight</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Example – MAJORITY

- The server S computes the encrypted concise truth table (pk_6 is the server’s public key)

<table>
<thead>
<tr>
<th>$E_{pk_1,...,pk_6}(0; r_1, ..., r_6)$</th>
<th>$E_{pk_1,...,pk_6}(0; r_1, ..., r_6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{pk_1,...,pk_6}(0; r_1, ..., r_6)$</td>
<td>$E_{pk_1,...,pk_6}(1; r_1, ..., r_6)$</td>
</tr>
<tr>
<td>$E_{pk_1,...,pk_6}(1; r_1, ..., r_6)$</td>
<td>$E_{pk_1,...,pk_6}(1; r_1, ..., r_6)$</td>
</tr>
</tbody>
</table>
Example – MAJORITY

- P_1 with input $x_1 = 0$ erases

<table>
<thead>
<tr>
<th>$E_{p_{k1},...,p_{k6}} (0; r_1, ..., r_6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{p_{k1},...,p_{k6}} (0; r_1, ..., r_6)$</td>
</tr>
<tr>
<td>$E_{p_{k1},...,p_{k6}} (0; r_1, ..., r_6)$</td>
</tr>
<tr>
<td>$E_{p_{k1},...,p_{k6}} (1; r_1, ..., r_6)$</td>
</tr>
<tr>
<td>$E_{p_{k1},...,p_{k6}} (1; r_1, ..., r_6)$</td>
</tr>
</tbody>
</table>
Example – MAJORITY

- P_1 with input $x_1 = 0$ erases, removes its key and rerandomizes

<table>
<thead>
<tr>
<th>$E_{pk_2,..,pk_6}(0; r_2, ..., r_6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{pk_2,..,pk_6}(0; r_2, ..., r_6)$</td>
</tr>
<tr>
<td>$E_{pk_2,..,pk_6}(0; r_2, ..., r_6)$</td>
</tr>
<tr>
<td>$E_{pk_2,..,pk_6}(0; r_2, ..., r_6)$</td>
</tr>
<tr>
<td>$E_{pk_2,..,pk_6}(1; r_2, ..., r_6)$</td>
</tr>
<tr>
<td>$E_{pk_2,..,pk_6}(1; r_2, ..., r_6)$</td>
</tr>
</tbody>
</table>
Example – MAJORITY

- \(P_2 \) with input \(x_2 = 1 \) erases

<table>
<thead>
<tr>
<th>(E_{p_{k_2,\ldots,p_{k_6}}(0; r_2, \ldots, r_6)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{p_{k_2,\ldots,p_{k_6}}(0; r_2, \ldots, r_6)})</td>
</tr>
<tr>
<td>(E_{p_{k_2,\ldots,p_{k_6}}(1; r_2, \ldots, r_6)})</td>
</tr>
<tr>
<td>(E_{p_{k_2,\ldots,p_{k_6}}(1; r_2, \ldots, r_6)})</td>
</tr>
</tbody>
</table>
Example – MAJORITY

- P_2 with input $x_2 = 1$ erases, removes its key and rerandomizes

<table>
<thead>
<tr>
<th>$E_{pk_3,\ldots, pk_6}(0; r_3, \ldots, r_6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{pk_3,\ldots, pk_6}(0; r_3, \ldots, r_6)$</td>
</tr>
<tr>
<td>$E_{pk_3,\ldots, pk_6}(1; r_3, \ldots, r_6)$</td>
</tr>
<tr>
<td>$E_{pk_3,\ldots, pk_6}(1; r_3, \ldots, r_6)$</td>
</tr>
</tbody>
</table>
Example – MAJORITY

- P_3 with input $x_3 = 1$ erases

\[
\begin{align*}
E_{pk_3,\ldots, pk_6}(0; r_3, \ldots, r_6) \\
E_{pk_3,\ldots, pk_6}(1; r_3, \ldots, r_6) \\
E_{pk_3,\ldots, pk_6}(1; r_3, \ldots, r_6)
\end{align*}
\]
Example – MAJORITY

- P_3 with input $x_3 = 1$ erases, removes its key and rerandomizes

\[E_{pk_4,\ldots, pk_6}(0; r_4, \ldots, r_6) \]
\[E_{pk_4,\ldots, pk_6}(1; r_4, \ldots, r_6) \]
Example – MAJORITY

- P_4 with input $x_4 = 0$ erases

\[
E_{pk_4,\ldots, pk_6}(0; r_4, \ldots, r_6)
\]
\[
E_{pk_4,\ldots, pk_6}(1; r_4, \ldots, r_6)
\]
Example – MAJORITY

P_4 with input $x_4 = 0$ erases, removes its key and rerandomizes

\[
\begin{align*}
E_{pk_5,pk_6}(0; r_5, r_6) \\
E_{pk_5,pk_6}(1; r_5, r_6)
\end{align*}
\]
Example

- A corrupted P_5 colluding with a corrupted server know that the first 4 parties were divided evenly, but **nothing else**

<table>
<thead>
<tr>
<th>$E_{pk_5, pk_6}(0; r_5, r_6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{pk_5, pk_6}(1; r_5, r_6)$</td>
</tr>
</tbody>
</table>
Security

- If server is honest, no one learns anything
- If server is corrupt, it cannot decrypt anything which is still encrypted under an honest party’s public-key
 - Security level achieved when last few parties are corrupted is the same as if they just didn’t participate to start with
- Rerandomization ensures that the row removed is not learned
Concrete Cost

- Each party computes on average about $\frac{3n}{2}$ exponentiations
 - We can do 1000 – 2000 exponentiations per second, making this protocol practical even for thousands of users (unless many come at the same time)

- For malicious adversaries
 - Need to add digital signatures and ZK proofs (these are just Diffie–Hellman tuple proofs)
 - The concrete cost is less than $8n^2$ (with Fiat–Shamir)
 - This is still practical for not too many parties
 - About 10 seconds for 40 parties (tenure example)
Highly efficient optimally private protocols for:
- Symmetric functions over \mathbb{Z}_c
- Sum function over large domain
- Selection functions

A general feasibility result:
- Any decomposition f_1, \ldots, f_n can be securely computed, under the DDH assumption (and NIZK for malicious)

This can be used for any decomposition (minimal or not)
- The actual security derived depends on the decomposition
- Minimal is best; if not, then it depends on the application
Summary

- Fully interactive secure computation is a problem in practice
 - A **one-pass client/server protocol** is essential for many applications, and is also interesting from a theoretical point of view

- **Our results**
 - Introduced the model and definitions
 - Studied inherent limitations and use function decomposition to model this
 - Constructed highly efficient and practical protocols exist for many natural problems in this setting
 - Proved general feasibility for any decomposition