
Time-Lock Puzzles 
In the Random Oracle Model 

Mohammad Mahmoody, Tal Moran, Salil Vadhan 



• Sending  an encrypted message to the future 
– shouldn’t be revealed before some future date 

– no safe storage for secrets 

• Encode key as a “time-lock” puzzle 
– Bounds for computation time to solve puzzle 

• e.g., can be solved in 25 years on reasonable computer  

• Requires at least 20 on today’s fastest computer 

– Puzzle generation is fast 

Time-Lock Puzzles 

Also useful for: 
 fair contract signing, sealed-bid auctions, 
coin flipping and more [RSW96,BN00,…] 



• Invert a one-way function  
– Give some of the input to reduce search space 

– (Assume brute-force is the only attack) 

 

• Attackers might have many more computers! 
– e.g., Botnets, “cloud” servers. 

– Shouldn’t gain a large advantage over 
legitimate solver (with one computer) 

 

• Want a puzzle that is inherently sequential 
 

Naïve Puzzle 

y=f(x1,x2,… ,x100 ) ,x1,x2,..x50 



Known Solutions 

• Exponentiation (modulo  N) 

                       f(x)=22x
 mod N  

– Fastest known method is repeated squaring 
• takes Ω(x) time 

– Can solve puzzle quickly if (N)=(p-1)(q-1) is known  
• compute  x’=2x mod (N) 

• compute  2x’ mod  N 

• Requires RSA assumption 
– what about quantum botnets? 

– Can we use other assumptions? 

 

 
 

 

   [RSW96] 

Takes time O(log(x)+log(N)) 



• Answer to each query is uniformly random  
(independently of other queries) 

• The same query always gets the same answer 
• Complexity: count # of queries  
• Random Oracle is one-way even for computationally 

unbounded players 
– Impossibility results in RO rule out black-box constructions in 

standard model 

• Heuristic for converting RO protocols to standard model 
– Replace RO with cryptographic hash (e.g. SHA256) 
– Not provably secure, but is used in practice 

The Random Oracle Model 

$#@%: Yes 



Our Results: Overview 

• Main Result: 

– Time-lock puzzles that require n queries to 
generate can be solved in n parallel steps. 

– Rules out black-box constructions 
from one-way/hash functions 

• Positive result: 

– Simple Time-lock puzzle satisfying 

• n parallel queries to construct 

• n sequential queries required to solve 

 

Generator with 
n parallel CPUs - 

n times faster 
than solver 

(total # queries 
polynomial in 
honest solver) 



Main Result 

• High-level Sketch: 

– Construct adversary that finds intersection queries 

 

Puzzle Generator Puzzle Solver 

Based on ideas from attacks on key-exchange protocols 
in the random oracle model [IR89,BM09]  



Main Result 

• High-level Sketch: 

– Construct adversary that finds intersection queries 

 

Puzzle Generator Puzzle Solver 



• High-level Sketch: 

– Construct adversary that finds intersection queries 

 

 

 

 

– Run honest solver with simulated oracle 

• Answer known queries correctly, others randomly 

– Success prob. identical to honest solver 

– Main hurdle: find intersections with low adaptivity 

Main Result From generator’s point of 
view, “real” answers are 

identical to “fake” on 
unqueried indices 



• For all ε, adversary uses n/ε rounds of queries 
– Queries in each round can be done in parallel 

• In each round: 
– Simulate honest solver 
– Answer known queries correctly, others randomly 
– Ask all queries to real oracle in parallel after every round 

• Output results of randomly chosen round 
 

Finding Intersection Queries 
(efficient adversary with non-optimal adaptivity) 

Adversary’s 
error prob.  

# queries 
used by 

generator 



Finding Intersection Queries: Analysis 

• Success probability: 1-ε 
– If simulation in output round did not hit any new 

intersection queries: 
simulated output is identically distributed to honest 
output (success probability is 1) 

– Generator asks at most n queries 
• Adv. asks a new intersection query in at most n rounds 

– Random round hits all intersection queries 
with prob. 1-ε 

• Query complexity: nm/ε 

• Computational complexity:  
– polynomial in honest solver complexity 

# queries 
for honest 

solver 



Positive Construction 

• Time-lock puzzle encodes “pointer chain” 

– Generator queries in parallel 

– Solver must serially follow pointers 

x0 x1 x2 S 

y1 y2 y3 y0 If adversary does not query 
oracle, it cannot do better 
than guessing next pointer 



Discussion and Open Questions 

• Optimally Adaptive (but inefficient) adversary 
– Uses n rather than n/ε adaptive rounds 
– Based on new learning algorithm for intersection queries. 

• Corollary: 
–  “Merkle puzzles” can be solved in linear parallel time 

• Our negative result does not rule out “proofs of work” 
– In a proof-of-work, puzzle generator can verify solution quickly 

but not solve. 
– Positive solutions exist (work in progress) 

 
• Still open: 

– Other time-lock puzzles in standard model? 
– Time-lock puzzles for quantum computers? 

• Related to [BHKKLS11] (coming soon to a lecture hall near you!) 

 




