LEFTOVER HASH

£\ ‘

LEMMA

REVISITED

Yevgeniy Dodis (New York University)

Imperfect Random Sources

ldeal randomness is crucial in many areas
Especially cryptography (i.e., secret keys) [MP21,DOPS04,BD07]

However, often deal with imperfect randomness

physical sources, biometric data, partial knowledge about

secrets, extracting from group elements (DH key exchange),...
Necessary assumption: must have (min-)entropy
(Min-entropy) m-source: Pr[X=x] <27, for all x

Can we extract (nearly) perfect randomness from such

realistic, imperfect sources?

Extractors

Tool: Randomness Extractor [NZ96].
Input: a weak secret X and a uniformly random seed S.
Output: extracted key R = Ext(X; S).
R is uniformly random, even conditioned on the seed S.
(Ext(X; S), S) = (Uniform, S)
Many uses in complexity theory and cryptography.

Well beyond key derivation (de-randomization, etc.)

secret: X . extracted key:

Ext —— R

seed: S

Parameters
=

0 Min-entropy m.

0 Output length v.
Equivalent measure: Entropy Loss L = m — .
01 Error € (measures statistical distance from uniform).
Defines security parameter & = log(1/¢)
0 Seed Length n.
0 Optimal Parameters [Sip, RT, DOJ:

Seed length n = O(security parameter log(1/¢))
Entropy loss L. = 2log(1/¢)

1 Can we match them efficiently?

Y g
e

Leftover Hash Lemma (LHL) ‘x,
]

oA T
'a’*Po

"Todays special is
vesterdays left overs.”

Y g
e

Leftover Hash Lemma (LHL) ‘x,

_ 6|
0 Universal Hash Family 3C = { h: %€ —{0,1}"}:

vxzy PRlhe)=ho)1=5

L=

F A | 4

Universal hash functions {n} yield good extractors:

(h (X), h) =, (U, h))2
optimal entropy loss: [= 2 lOg(l/S) e \#1

sub-optimal seed length: 77 > | X| @4 ,
?:
1 Pros: simple, very fast, nice algebraic properties .:e»

0 Leftover Hash Lemma [HILL].

11 Cons: large seed and entropy loss

Part |: Improving the Entropy Loss

TOUR OF ACCOUNTING

ARE

THAT'S THE §
PROBLEM
WITH RAN-
DOMNESS
YOU CAN
MEVER BE

MIMNE NIME
NIME NINE
' NIME NINE

YOu
SURE
THAT'S
RANDOM?

OVER HERE

WE HAVE OUR

RANDOM NUMBER
oty GENERATOR.

AN L B

s el ey

1 el @S Waked Fsrmre brodwam, o,

s it Important?

Yes! Many sources do not have “extra” 2log(1/¢) bits

Biometrics, physical sources, DH keys of elliptic curves (EC)

DH: lower “start-up” min-entropy also improves efficiency

Heuristic extractors, analyzed in the random oracle
model, have “no entropy loss”

End Result: practitioners prefer heuristic key derivation

to provable key derivation (see [DGH™ Kra])

Goal: provably reduce 2 log(1/¢) entropy loss of LHL
closer to “no entropy loss” of heuristic extractors

s not 2log(1/¢) entropy loss optimal?

Yes, if must protect against all distinguishers D

Cryptographic Setting: restricted distinguishers D
D = combination of attacker A and challenger C

D outputs 1 << A won the game against C

Case Study: key derivation for signature /MAC
Assume: Pr[A forges sig with random key] < ¢ (= negl)
Hope: Pr[A forges sig with extracted key] < €’ (= €)

Key Insight: only care about distinguishers which almost
never succeed (on uniform keys) in the first place!

Better entropy loss might be possiblel

Improved Entropy Loss for Key Derivation

Setting: application P needs a v—bit secret key R
Ideal Model: R <~ U is uniform

Real Model: R <— Ext(X; S), where H (X) =V + L

Assumption: P is e=secure in the ideal model

Conclusion: P is £'=secure in the real model

Standard LHL: if Ext is universal hash function, then
g’ <eg++2*

Our Result: For a “wide range” of applications P
g <g++e2?L

Improved Entropy Loss for Key Derivation

[l

Moral:

[

[l

Might extract more if know
why you dre extracting

0 Standard LHL: if Ext is universal hash function, then

g <e¢ 2L

1 Our Result: For a “wide range” of applications P

g’ <g++e2L

Comparison

Standard LHL: ¢’ < & ++/27L
Must have L = 2log(1/¢) for €’ = 2¢
Not meaningful for L < O, irrespective of €
RO Heuristic: ¢’ < ¢ +¢-271
Suffices to have L = 0 (no entropy loss) for £ = 2¢

Meaningful for L < 0, “borrow” security from application

Our Result: ¢’ < ¢ +/e-27L

“Halfway in between” standard LHL and RO
Suffices to have L = log(1/¢) for €’ = 2¢
Like RO, meaningful for . < O (e.g. get £'=+/¢ when L=0)

Which Applications?
13 |
0 All “unpredictability” applications
MAC, signature, one-way-function, ID scheme, ...
-1 Prominent “indistinguishability” applications

(stateless) CPA /CCA secure encryption, weak PRFs

But not PRFs, PRPs, stream ciphers, one-time pad
m Note: OK to derive AES key for CPA encryption/MAC |

1 Observation: composing with a weak PRF, can
include any (computationally-secure) application !
E.g., PRFs/PRPs/stream ciphers, but not one-time pad

Cost: one wPRF call + wPRF input now part of the seed

Part ll: Improving the Seed Length

Big things are
happening
around here!

Expand-then-Extract

20|
- Recall, best n = O(sec. param. k)
But LHL needs n > |X|

11 ldea: use pseudorandom generator (PRG) G to

expand the seed from /& bits to n = |.X| bits:
Ext’(X; s) = Ext(X; G(s))
Friendly to “streaming” sources

Can result in very fast implementations

1 Hope: extracted bits are pseudorandom

1 Is this idea sound?

Soundness of Expand-then-Extract
Em

0 Trivial: (Ext(X; G(S)), G(S)) = _(U,, G(3S))
Otherwise distinguish G(U,) from U
- Problem: need (Ext(X; G(S)), S) =_ (U, S) (%)

11 Theorem 1: Under DDH assumption, there exists a
PRG G and a universal hash function Ext (thus,
extractor, by LHL) s.t. can break (*) efficiently with

advantage = 1 on any source X

Thus, expand-then-extract might be insecure ®

OK to Extract Small Number of Bits!

Theorem 2: Extract-then-expand is secure when number

of extracted bits v < “log(PRG security)”
Note 1: PRG should be secure against O(22W) size circuits
Note 2: extracted bits are still statistically random !
Note 3: same min-entropy 71, error drops to /€

Corollary: always safe to extract v = O(log k) bits,

sometimes might be safe to extract v = (k) bits ©

Seed Length 1 2 At best, n = O(v + log(1/¢)), same as
“almost universal” hash functions ®

Expand-then-Extract Secure in Minicrypt

Counter-example used DDH — “public-key gadget”

Minicrypt: one of Impagliazzo’s worlds, where
PRGs exist but no public-key encryption (PKE)

Theorem 3: Extract-then-expand is secure in

Minicrypt
True for any number of extracted bits, but “settle” for

efficiently samplable sources and pseudorandom bits

Similar in spirit to [HN, Pie, Dzi, DI, PS], but simpler!

Expand-then-Extract Secure in Minicrypt

1 Theorem 3: if X is efficiently samplable, G is a PRG
and D efficiently distinguishes (Ext(X; G(S)), S) from
(U, S), then PKE exist

0 Secret Key = S, Public Key = G(S)

1 Encryption Enc,(b): send ciphertext R, where

if b =0, sample X and set R <— Ext(X; G(S))
if b=1,setR <« U

-1 Decryption Decg,(R): use D(R, S) to recover b

1 Semantic security follows from PRG security:

(Ext(X; G(3)), G(S)) = (U, G(S)) _

Interpretation

Interpretation

Corollary: Let G be a PRG.

Assume there exists no PKE with sk = S, pk = G(S),
pseudorandom ciphertexts and = same security as G.
Then expand-then-extract is secure with G.

“Practical” PRGs (e.g. AES) unlikely to yield such a PKE

No black-box construction known (even with powerful
“cryptomania” assumptions, like NIZK, IBE, FHE, etc.)

Possible that no PKE is as secure as AES |
Would be a major breakthrough with, say, AES

Moral: formal evidence that expand-then-extract might
be “secure in practice” (with “actually used” ciphers)

Summary

Can improve large entropy loss and seed length of LHL

Entropy loss: for a wide range of applications reduce
entropy loss from 2log(1/¢) to log(1/¢)

Directly includes all authentication and some privacy
applications (including CPA encryption, weak PRFs)

Using wPRFs, computational extractor for all applications!

Seed length: expand-then-extract approach

Not sound in general...
Sound for extracting small # of bits

Sound for “practical” PRGs (which do not “imply” PKE)

s time o Wit & papen!

Available at http://eprint.iacr.org/2011/088 LI

