Differential Fault Analysis of Trivium

Michal Hojsík 1, 3 and Bohuslav Rudolf 2, 3

¹ The Selmer Center, University of Bergen, Norway

²National Security Authority, Czech Republic

³Department of Algebra, Charles University in Prague, Czech Republic

Fast Software Encryption 2008 February 10-13, Lausanne

Talk outline

- Trivium description
- Differential fault analysis
- Differential fault analysis of Trivium
- Experimental results

Trivium

- Hardware oriented additive synchronous stream cipher
- Designed by de Cannière and Preneel in 2005 for eSTREAM Project
- Very fast in hardware and software
- 80-bit secret key and 80-bit initialisation vector
- Consists of 3 non-linear shift registers
- 288 bit inner state

Trivium Description

- Inner state $IS = (s_1, \dots, s_{288})$
- Keystream generation algorithm:

4/13

Trivium Description

- Secret key $K=(K_1,\ldots,K_{80})$, initialisation vector $IV=(IV_1,\ldots,IV_{80})$
- Initialisation algorithm = 1152 loops of the keystream gen. alg. without output

4/13

Differential Fault Analysis - DFA

- Type of active side-channel attack adversary actively interferes with a cryptosystem
- First used in 1996 by Boneh et al. for RSA and by Biham and Shamir for DES
- Results on stream ciphers, e.g.
 - Hoch, Shamir 2004 Fault Analysis of LFSR based ciphers, Lili128, Sober-t32
 - Biham, Grandboulan 2005 Impossible Fault Analysis of RC4

DFA Attack Model

General DFA attack model:

- Attacker is able to inject a fault into a cipher inner state or intermediate result
- Attacker has only partial control over their number, location, timing ...
- Attacker can reset the device to its original state and repeat fault injection

Our assumptions:

Attacker is able to:

- obtain first n consecutive bits of (proper) keystream $\{z_i\}$ produced out of a state IS_t
- inject exactly one fault (bit flip) into IS_t at random position \rightarrow faulty inner state IS_t
- obtain first *n* consecutive bits of faulty keystream $\{z'_i\}$ produced out of IS'_t
- repeat the fault injection into the same inner state ISt m times

Can be achieved in the Chosen ciphertext attack scenario

- Attack is based on the simplicity of the Trivium feedback functions
- Attack uses simple equation

$$(x+1)\cdot y + x\cdot y = y$$

- Attack is based on the simplicity of the Trivium feedback functions
- Attack uses simple equation

$$(x+1)\cdot y + x\cdot y = y$$

- Attack is based on the simplicity of the Trivium feedback functions
- Attack uses simple equation

$$(x+1)\cdot y + x\cdot y = y$$

- Attack is based on the simplicity of the Trivium feedback functions
- Attack uses simple equation

$$(x+1)\cdot y + x\cdot y = y$$

- Attack is based on the simplicity of the Trivium feedback functions
- Attack uses simple equation

$$(s_{40}+1)\cdot s_{41}+s_{40}\cdot s_{41}=s_{41}$$

- Attack is based on the simplicity of the Trivium feedback functions
- Attack uses simple equation

$$s_{39} \cdot (s_{40} + 1) + s_{39} \cdot s_{40} = s_{39}$$

Attack Description I

- Core of the attack solve a system of equations in the inner state bits $IS_t = (s_1, \dots, s_{288})$
- Use equations given by the (proper) keystream $\{z_i\}$
- Use differential fault analysis to obtain more equations
- **Precomputation:** for each fault position e, $1 \le e \le 288$
 - express first *n* delta-keystream bits as expression is (s_1, \ldots, s_{288})
 - store the equations in a table
- Fault position determination:
 - distance between the output bits differs for each register
 - compute the distances between nonzero bits of a keystream difference
 - determine the fault position table lookup

Attack Description III

Attack algorithm:

- obtain the proper keystream generated from $\ensuremath{\mathsf{IS}}_\mathsf{t}$
- insert the keystream equations into the system

while solution not found

- reset the cipher to the state ISt
- insert a fault into $\ensuremath{\mathsf{IS}}_\mathsf{t}$ at random position
- obtain the faulty keystream
- determine the fault position
- insert delta keystream equations into the system
- try to solve the system

end while

- clock Trivium backwards until initial state reached
- read the secret key and IV

Experimental Results

Attack:

Number of fault injections needed, m, to obtain T inner state bits (avg. over 1000 exp.)

ſ	Т	60	80	100	120	140	160	180	200	220	240	260	280	288
Ì	m	28	35	39	41	42	42	42	42	42	43	43	43	43

Number of obtained equations:

The average number (among all fault positions) of equations obtained from a random fault:

number	The average number of equations of degree <i>d</i> obtained from one fault.										
of steps	d = 1	d = 2	d = 3	d=4	d = 5	<i>d</i> = 6	d = 7				
200	1.99	2.52	0.89	0	0	0	0				
220	1.99	4.14	1.53	0	0	0	0				
240	1.99	5.99	2.82	0.03	0	0	0				
260	1.99	7.76	4.15	1.13	0.45	0.37	0.28				
280	1.99	9.22	5.22	3.42	1.47	1.23	0.96				
300	1.99	9.77	5.86	7.10	3.55	2.66	2.09				

New Results (January 2008)

- New DFA attack on Trivium
- Same assumptions as in the described attack
- Attack uses another cipher representation
- Attacker needs approx. 12 fault injections to obtain the secret key and IV

Conclusion

- Differential fault analysis of Trivium described
- The first time DFA applied to non-linear feedback shift register stream cipher
- Attacker can obtain the secret key after approx. 43 (12) fault injections
- Attack works in chosen ciphertext attack scenario
- Described attacks have low complexity and are easy to implement

Conclusion

Thank you for your attention!

