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Outline

Outline

Various experimental attacks against reduced-round Serpent are
presented.
We used the framework proposed by Biryukov et al. at crypto 2004 [2]
The purposes are the following :

To confirm the relevance of their theoretical approach

To show the practical improvements of multiple approximations

To observe the consequences of linear dependancies in the
approximations

To compare the specificities of Matsui’s Algorithm 1 and 2
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Linear cryptanalysis Introduction

Initially proposed by Matsui [8] in 1993

Exploits bias in the occurrence probability of a linear approximation

Such expressions are obtained by linear approximations of the
non-linear elements of the cipher

Linear Approximation

P[χP ]⊕ C [χC ] = K [χK ] (1)

P, C and K denote the plaintext, ciphertext and the secret key

A[χ] stands for Aa1 ⊕ Aa2 ⊕ ...⊕ Aan

χ is usually denoted as a mask

For a ’good’ approximation, the equation holds with a probability
significantly different than 1/2
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Linear cryptanalysis Algorithms

Given a r-round approximation P[χP ]⊕ C [χC ] = K [χK ] with bias ε

Algorithm 1

Algorithm 1 attacks r-round cipher by simply evaluating P[χP ]⊕ C [χC ]
for a sufficiently large number of plaintext-ciphertext. The parity of
K [χK ] can then be guessed thanks to the probability of the left parity.
This attack recovers one bit of key parity.

Algorithm 2

Algorithm 2 targets (r+1)-rounds cipher by partially decrypting the last
round with a key guess and then evaluates the experimental bias for each
guess. Several bits can be recovered at the same time.

In both cases, the data complexity is proportional to 1/ε2
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Linear cryptanalysis Multiple linear cryptanalysis

Multiple linear cryptanalysis

Improves cryptanalysis by using multiple approximations

Introduced by Kalisky and Robshaw [5] in 1994

Improved by Biryukov et al. [2] in 2004

Defines capacity as c2 = 4 ·
∑n

i=1 ε
2
i

⇒ Decreases the data complexity to O(1/c2)
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Linear cryptanalysis Multiple linear cryptanalysis

Theoretical framework

Given m approximations on r rounds :

P[χi
P ]⊕ C [χi

C ] = K [χi
K ] (1 ≤ i ≤ m), (2)

We want to determine the value of the vector of parity :

Z = (z1, z2, ..., zm) = (K [χ1
K ],K [χ2

K ], ...,K [χm
K ]) (3)

Define a counter Ti for approximation i

Ti is incremented when the approximation is verified for a P-C pair

The experimental biases ε∗i are evaluated as (Ti − N/2)/N

A sorted list of the vector parity candidates is built according to the
distance between theoretical and experimental biases

The remaining unknown bits are guessed by exhaustive search.
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Linear cryptanalysis Gain

Definition (Gain)

if an attack is used to recover an n-bit key and is expected to return the
correct key after having checked M candidates in average , then the gain
of the attack, expressed in bits, is defined as :

γ = −log2
2 ·M − 1

2n
(4)

Intuitively, the gain is a measure of the remaining key candidates to test
after a cryptanalysis has been performed. This gain is determined by the
position of the correct vector of parity in the weighted list of candidates
obtained during the analysis phase.
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Preliminary remarks

2. Preliminary remarks
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Preliminary remarks The cipher Serpent

Serpent

AES candidate - rated second behind Rijndael

Designed by Anderson, Biham and Knudsen [1]

Conservative design

Architecture

Substitution-Permutation Network (SPN)

Composed of 32 rounds

For each round :

A subkey addition
A passage through S-boxes
A linear transformation

Best known attack

Linear-differential cryptanalysis on 11 rounds (Biham et al. [12] ).
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Preliminary remarks Experiments with a single approximation

Evolution of the experimental biases according to the data complexity :

We used a 4-round linear approximation with a bias of 2−12

We evaluated the experimental bias with up to 16 ∗ 224 texts

The bias becomes stable after about 8/ε2 texts.

The underestimated theoretical bias suggests that the linear hull
effect [4] is not negligible
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Preliminary remarks Experiments with 64 approximations

Evolution of the experimental bias according to the data complexity :

We used 64 4-round linear approximations with various biases

We evaluated the experimental biases for up to 1500 ∗ 224 texts

Approximations separate into 2 according to the sign of their bias

Each approximation provides some information about the key
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Experimental attacks with Algorithm 1

3. Experimental attacks with Algorithm 1
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Experimental attacks with Algorithm 1 Selection of the approximations

Linear approximation search

Generation of the approximation is computationally demanding

A branch-and-bound algorithm was proposed by Matsui [10]

We used a modified heuristic [3]

Selection of the approximations

With Algorithm 1, an adversary recovers linear combination of subkey bits

This drawback can be partially relaxed using multiple approximations :

The best linear approximation found is selected

Then only the input/output masks of the linear trail are modified

Finally, by carefully choosing the linear dependancies, the adversary
ends up with an exploitable information on the cipher key.

As the linear trail is the same for all the approximations except in the
input/output, the adversary can easily recover first/last subkey bits.
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Experimental attacks with Algorithm 1 Attack results

Evolution of the distance between theoretical and experimental biases :

We used 64 4-round linear approximations with various biases

Between 2/c2 and 128/c2 texts were used

Attack results improve with the number of texts

A regular structure underlines the impact of the Hamming distance.
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Experimental attacks with Algorithm 1 Attack results

Same experiment using 4096/c2 texts :

10 parity bits K [χi
K ] have to be guessed

The regular structure is even more remarkable
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Experimental attacks with Algorithm 1 Attack results

Gain of three attacks with respectively 1, 10 and 64 approximations :

Only 10 linearly independent approximations

Gain with 64 approx. increases ' 8 times faster than with 10 approx.

The graph shows no influence of the linear dependencies
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Experimental attacks with Algorithm 1 Gain vs. success rate

Definition (success rate)

The success rate of an attack using n approximations is the percentage
of parity bits guessed correctly among the n parities when they are
choosen so as to minimize the distance between experimental and
theoretical biases.

Rationale

Unlike the gain, it doesn’t take the linear dependencies into account

Comparison allows to determine the advantage of multiple
approximations.
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Experimental attacks with Algorithm 1 Gain vs. success rate

Error Correcting code effect :

Using 64 approximations, only 10 linearly independent

The gain increases much faster than the succes rate

Consequence of linear dependancies in the approximations
The correct vector of parity must respect these dependancies
This gives an efficient way to check a parity candidate

Some parity candidates can be rejected a-priori.
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Experimental attacks with Algorithm 1 Gain vs. success rate

Suppose n′ out of the n approximations are guessed correctly :

The success rate is n′/n.

The gain is evaluated according to the position of the correct parity
vector in the list of parity candidates :

Choose the first candidate so as to minimize the euclidian distance
between theoretical and experimental biases.
Assume one guess is incorrect ; choose one parity bit and take its
complement ; try the

(
n
1

)
possible candidates ;

Assume two guesses are incorrect ; choose two parity bits and take
their complements ; try the

(
n
2

)
possible candidates ;

...
Assume n − n′ guesses are incorrect ; choose n − n′ parity bits and
take their complements ; try the

(
n

n−n′

)
possible candidates ;

After n − n′ steps, we have necessarily found the correct candidate
Thus the gain of the attack equals :

γ = −log2

(∑n−n′

i=0

(
n
i

)
2n

)
(5)
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Experimental attacks with Algorithm 1 Gain vs. success rate

Gain vs. Success rate (up to 416 approx. and 15 independent one) :

Predictions (in black) assume independence of the approximations

Observations fit well as long as the gains do not saturate

For a given success rate, the gain increases with the number of
approximations
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Experimental attacks with Algorithm 2

4. Experimental attacks with Algorithm 2
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Experimental attacks with Algorithm 2 Difference between Algorithm 1 and Algorithm 2

Difference between Algorithm 1 and Algorithm 2

With Algorithm 1, parity guesses are choosen so as to minimize :

min
g

m∑
i=1

(εi − (−1)g(i) · ε∗i )2, (6)

Algorithm 1 works even if the theoretical biases are underestimated.

With Algorithm 2, subkey and parity guesses are choosen to
minimize :

min
k

(
min

g

m∑
i=1

(εi − (−1)g(i) · ε∗i ,k)2
)

(7)

Algorithm 2 requires good theoretical estimations of experimental
biases

The framework of Biryukov cannot be directly applied in this context

We look for the guess with the highest experimental bias instead
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Experimental attacks with Algorithm 2 Attack results

Attacks against 5-round Serpent using 32 approximations :
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Experimental attacks with Algorithm 2 Attack results

Gain of the attack :

Multiple approximations allows to increase the gain of an attack

Increasing the number of approximations does not involve reductions
of the data complexity according to the capacity as for Algorithm 1.
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Conclusion and further work

5. Conclusion and further work
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Conclusion and further work

We presented experimental results of multiple linear cryptanalysis
against 4- and 5-round Serpent.

In practice, our experiments confirmed the significant improvement
of multiple linear cryptanalysis attacks compared to Matsui’s original
attack.

As expected, Attack showed no influence of linear dependencies on
the gain
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Conclusion and further work

By contrast with experiments against the DES, we observed a significant
linear hull effect, with the following consequences :

Optimal attacks using Matsui’s Algorithm 1 closely followed the
data complexities predicted with the capacity value, even if the
theoretical biases of the approximations were underestimated.

Optimal attacks using Matsui’s Algorithm 2 did not lead to
successful key recoveries because of the lack of good theoretical
estimations of the biases. Modified heuristics allowed us to take
advantage of multiple approximations. But the improvement is not
following the predictions of the capacity values anymore.
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Conclusion and further work

Thanks for your attention !
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