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Abstract. ElGamal encryption is the most extensively used alternative
to RSA. Easily adaptable to many kinds of cryptographic groups, ElGa-
mal encryption enjoys homomorphic properties while remaining seman-
tically secure providing that the DDH assumption holds on the chosen
group. Its practical use, unfortunately, is intricate: plaintexts have to be
encoded into group elements before encryption, thereby requiring awk-
ward and ad hoc conversions which strongly limit the number of plaintext
bits or may partially destroy homomorphicity. Getting rid of the group
encoding (e.g., with a hash function) is known to ruin the standard model
security of the system.

This paper introduces a new alternative to group encodings and hash
functions which remains fully compatible with standard model security
properties. Partially homomorphic in customizable ways, our encryptions
are comparable to plain ElGamal in efficiency, and boost the encryption
ratio from about 13 for classical parameters to the optimal value of 2.

Keywords: Cryptography, ElGamal encryption, Diffie-Hellman, Resid-
uosity classes, Group encodings.

1 Introduction

Since the discovery of public-key cryptography [7], very few practical cryptosys-
tems have been suggested that sustain a strong evidence of security in the stan-
dard model.
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Factoring vs. Discrete-Log Encryption Schemes. In brief, there ex-
ist two main families of provably secure cryptosystems. The first family re-
lates to integer factoring (Rabin [21], RSA [22], Naccache-Stern [16], Okamoto-
Uchiyama [18], Paillier [19]). The others are based on the discrete logarithm
or the Diffie-Hellman problems. Within this family, ElGamal encryption [8] is
certainly the most extensively used for cryptographic applications.

Cryptosystems belonging to the first family support the encryption of mes-
sages without prior formatting in the sense that any fixed-size integer is a proper
input of the encryption algorithm. However, all known discrete-log-based en-
cryption schemes which feature standard-model security such as Cramer-Shoup
encryption [5], are restricted to encrypt group elements.

This drawback, often overlooked, seems inherent to the nature of these cryp-
tosystems. Variants and alternate designs either drastically degrade bandwidth
and efficiency, or imply extra (and possibly questionable) assumptions in their
security analysis.

Historically, the first designs suggested to work in the largest possible sub-
group over which the encryption takes place. By virtue of the fact that invok-
ing the DDH assumption requires to use a prime order subgroup (or at least a
subgroup which order does not have small factors), the subgroup of quadratic
residues in Z

∗
p appears as the best choice in this respect. However, one then

has to perform operations in the group of order q = (p − 1)/2 which implies
exponentiations with large exponents.

A standard lesser evil consists in applying a hash function to the Diffie-
Hellman session key before masking the plaintext. The price to pay then amounts
to making stronger assumptions, such as the Hash Diffie-Hellman assumption [1,
12] or the random oracle model [2].

Our Contributions. This paper introduces a novel encryption technique that
does not require message encoding before encryption and enjoys strong security
against chosen-plaintext attacks without any extra assumption i.e., the security
of our cryptosystems stands in the standard model. One-wayness and indistin-
guishability rely on the use of new specifically introduced integer-theoretic prob-
lems which we call the (computational/decision) Class Diffie-Hellman problems
(CCDH, resp. DCDH).

Most interestingly, we provide a proof that CCDH is in fact equivalent to
CDH, meaning that the one-wayness of our schemes is identical to the one of
ElGamal encryption while providing an optimal encryption ratio of 2 instead of
13. The study of DCDH, however, remains a challenging open problem.

In terms of performance, the encryption and decryption procedures are equiv-
alent to respectively 6 and 5 exponentiations in a subgroup of prime order q with
e.g., log q = 160. No group encoding is required before encryption. Finally the
ciphertext size is identical to an ElGamal ciphertext, although the encryption
ratio reaches its optimum level: one may encrypt 1024-bit strings into a 2048-bit
ciphertext while still relying on a 160-bit subgroup.

Our cryptosystems also provide a weak form of additive or multiplicative
homomorphic property, in the sense that one can add a constant or multiply by
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a constant an encrypted value. However, one cannot re-randomize encryptions.
This amounts to say that if two ciphertexts were created using this property
(with the same random coins), every one may recover the difference or the ratio
between the plaintexts, without any private material.

Our encryption schemes are based on the mathematical properties of inte-
gers modulo p2 where p is a prime number. Interestingly, one would note that
homomorphicity has often been achieved by relying on the properties of special
moduli: Okamoto and Uchiyama [18] use properties of integers modulo n = p2q,
while Paillier [19] and Bresson, Catalano and Pointcheval [3] rather employ mod-
uli of the form n2. Damg̊ard and Jurik [6] use operations modulo ns for s > 2.
In all of these schemes, however, various forms of RSA moduli constitute ba-
sic scheme parameters and the trapdoor technique relates to factoring rather
than to discrete-log problems. Our work, by opposition, makes exclusive use of
prime-order groups.

Outline of the paper. Our work is divided as follows. Section 2 reviews
standard definitions and security notions for public-key encryption. Section 3
briefly recalls ElGamal encryption and variants thereof. In Section 4, we intro-
duce the Class Diffie-Hellman problems, then proceed to define and comment
on our encryption schemes. Their security is further discussed in Section 5. We
finally provide extensions to Zpk in Section 6.

2 Preliminaries

2.1 Public-Key Encryption

We identify a public-key encryption scheme S to a tuple of probabilistic algo-
rithms S = (K, E ,D) defined as follows:

Key Generation. Given a security parameter k, K(1k) produces a pair (pk, sk)
of public and private keys.

Encryption. Given a message m and a public key pk, Epk(m) produces a ci-
phertext c. If the procedure is probabilistic, we write c = Epk(m; r) where r
denotes the randomness used by E .

Decryption. Given a ciphertext c and a private key sk, Dsk(c) returns a plain-
text m or possibly ⊥ if the ciphertexts is invalid.

2.2 Security Notions for Encryption Schemes

One-Wayness. A most important security notion that one would expect from
an encryption scheme to fulfil is the property of one-wayness (OW): an attacker
should not be able to recover the plaintext matching a given ciphertext. We
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capture this notion more formally by saying that for any adversary A, succeed-
ing in inverting the effects of E on a ciphertext c should occur with negligible
probability. A is said to (k, ε, τ)-break OW when

Succow
S (A) = Pr

m,r
[(pk, sk)← K(1k) : A(pk, Epk(m; r)) = m] ≥ ε ,

where the probability is taken over the random coins of the experiment and
the ones of the adversary, and A halts after τ elementary steps. An encryption
scheme is said to be one-way if no probabilistic algorithm (k, ε, τ)-breaks OW

for τ ≤ poly (k) and ε ≥ 1/poly (k).

Semantic Security. The notion of semantic security (IND) [13], a.k.a., in-
distinguishability of encryptions captures a strong notion of privacy. Here, the
attacker should not learn any information whatsoever about a plaintext given
its encryption. The adversary A = (A1,A2) is said to (k, ε, τ)-break IND when

Advind
S (A) = 2× Pr

b,r

[

(pk, sk)← K(1k), (m0,m1, s)← A1(pk),
c = Epk(mb; r) : A2(m0,m1, s, c) = b

]

− 1 ≥ ε,

where again the probability is taken over the random coins of the experiment
as well as the ones the adversary. A must run in at most τ steps and it is
imposed that |m0| = |m1|. An encryption scheme is said to be semantically
secure or indistinguishable if no probabilistic algorithm can (k, ε, τ)-break IND

for τ ≤ poly (k) and ε ≥ 1/poly (k).

2.3 Computational Assumptions

We now briefly recall the definition of the discrete-log and related problems
needed for the sake of this work. In what follows, G denotes an abelian group
(denoted multiplicatively) of prime order q. We also consider a generator g of
G = 〈g〉.

Definition 1 (Discrete Logarithm – DL). Given gx ∈ G where x ← Zq,

compute x.

Definition 2 (Computational Diffie-Hellman – CDH). Given gx ∈ G and

gy ∈ G for x, y ← Zq, compute gxy ∈ G.

Definition 3 (Decision Diffie-Hellman – DDH). Let us consider the two
distributions D = (gx, gy, gxy) and R = (gx, gx, gz) for randomly distributed
x, y, z ← Zq. Distinguish D from R.

It is easily seen that DDH ⇐ CDH ⇐ DL where ⇐ denotes polynomial re-
duction between computational problems. In most cryptographic applications,
the structure of the group G is chosen in such a way that these three computa-
tional problems seem intractable. A typical example is to choose G ⊆ F

∗
p where

q divides (p − 1) where classically, p is a 1024-bit prime and q a 160-bit prime.
Another widely used family of groups is elliptic curves over large prime fields [15,
14].
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3 The ElGamal Cryptosystem

ElGamal encryption was introduced by T. ElGamal in 1985 [8]. The algebraic
framework requires a cryptographic group G of order q given with some generator
g.

One generates a public-private key pair by randomly selecting x ← Zq and
computing y = gx. The public key is then y while the private key is x. In order
to encrypt a message m, one randomly selects r ← Zq and computes u = gr and
v = yrm. The ciphertext is c = (u, v). Using the private key x, the ciphertext
c = (u, v) can be decrypted as m = v · u−x.

The key point here resides in the definition of the message space M. As
defined originally in [8], the group G was chosen to be the set of integers modulo
a large prime p (i.e., G = Zp), q was set to p − 1 and M was identified to Z

∗
p.

Unfortunately, using this definition, the cryptosystem is not indistinguishable:
given a ciphertext c = (u, v), an attacker can well decide with non negligible
probability whether c encrypts a given message m0. To this end, the attacker
computes v′ = v · m−1

0 , and then computes a = u(p−1)/2 and b = v′(p−1)/2. If
only one of the elements a or b is equal to 1, the adversary knows that c does
not encrypt m0. This simple attack actually checks the parity of the logarithms
of u and v′ with respect to g and y respectively: if c = (u, v) encrypts m0, it is
needed that these parities be identical.

This attack against indistinguishability shows that the order of the group G

must be relatively prime to any small integer (the attack described just above
can be extended trivially for any small divisor of q), and most preferably, the
order of group G must be chosen to be prime.

Description. Unfortunately, the above constraint translates into a restriction
on the message spaceM: it has to be embedded into the group G. Hence, before
encryption takes place, the message must be encoded into a group element, and
this group encoding must be efficiently invertible in order to allow the origi-
nal message to be recovered during the decryption process. Such an encoding
may be time-consuming, and may also partially or totally destroy the inherent
homomorphic property of the system. Also, using a group encoding remains in-
compatible with the optimization which consists in working in a small subgroup
of Z

∗
p of prime order q where q is a 160-bit prime, a setting in which group

exponentiations are much faster.

Set up: Let p be an `p-bit prime and q an `q-bit prime so that q divides (p−1).
Let G be the subgroup of Z

∗
p of order q, and g be a generator of G. Let Ω

be a one-to-one encoding map from Zq onto G.

Key generation: The private key is x← Zq. The corresponding public key is
y = gx.

Encryption: To encrypt a message m ∈ Zq, one encodes m by computing
ω = Ω(m), randomly selects r ← Zq and computes (u, v) = (gr, yrω). The
ciphertext is c = (u, v).
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Decryption: To decrypt a ciphertext c = (u, v), one computes ω = v · u−x and
recovers the original plaintext m = Ω−1(ω).

This cryptosystem is known to be one-way under the CDH assumption, and
indistinguishability holds under the DDH assumption. These security notions are
reached in the context of chosen-plaintext attacks, in the standard model.

3.1 The Hash-ElGamal Cryptosystem

In order to overcome the issue of group encoding, a hash variant of ElGamal
encryption was suggested.

Set up: Let p be an `p-bit prime and q an `q-bit prime so that q divides (p−1).
Let G be the subgroup of order q of Z

∗
p, and g be a generator of G. Let

H : G→ {0, 1}`m be a hash function.

Key generation: The private key is again x ← Zq. The corresponding public
key is y = gx.

Encryption: To encrypt a message m ∈ {0, 1}`m , one randomly selects r ← Zq

and computes (u, v) = (gr,H(yr)⊕m). The ciphertext is c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one computes m = H(ux)⊕ v.

This cryptosystem features one-wayness and indistinguishability under cho-
sen plaintext attacks under the sole CDH assumption. The security proof, how-
ever, stands in the random oracle model. Alternatively, under the DDH assump-
tion, one can apply a randomness extractor in place of the random oracle, in
order to generate a truly random mask. But this either requires large groups, or
drastically reduces the size of the mask [4].

4 Encoding-Free ElGamal Encryption

We now proceed to describe our new technique for encoding-free ElGamal en-
cryption. Our cryptosystems enjoy performances similar to plain ElGamal but
do not require group encoding, nor randomness extractors. Furthermore, their
security holds in the standard model under new intractability assumptions that
we introduce below. We start by providing definitions as well as the mathemat-
ical facts underlying our proposal.

4.1 The Class Function

Let p and q be prime numbers such that q | p − 1. Let g be an integer of order
pq modulo p2 and G = 〈g〉 the group formed by all elements of order pq modulo
p2. Hence Gp = 〈g mod p〉 is the subgroup of order q in Z

∗
p. By the Chinese

Remainder Theorem, there is a canonical mapping between Zp × Zq and Zpq.
For any x ∈ Zp and y ∈ Zq, 〈x, y〉 stands for the unique integer modulo pq such
that 〈x, y〉 = x mod p and 〈x, y〉 = y mod q.



Encoding-Free ElGamal Encryption Without Random Oracles 7

Definition 4 (Class of an element of G). Each and every element w of G

can be written as w = g〈x, y〉 mod p2 for a unique x ∈ Zp and a unique y ∈ Zq.

The integer x = [[w]] is said to be the class of w with respect to g.

It is easily seen that if w = g〈x, y〉 mod p2, then w = gy mod p. In other words,
y is the discrete log of w mod p with respect to g mod p. This means that, unless
extracting discrete logs over Gp is easy, y cannot be easily computed from w. It
appears, however, that computing the class of elements of G can be done publicly
and efficiently.

Lemma 1. Define over G the function L(w) = (wq−1 mod p2)/p. The class of
w = g〈x, y〉 mod p2 can be computed as x = L(w)L(g)−1 mod p.

This property is well-known and we refer the reader to [18, 19] for a proper
proof. Now let a be an integer modulo q and consider w = ga mod p. Since
w can also be viewed as an element of G, there exist integers x, y such that
w = g〈x, y〉 mod p2. However, g〈x, y〉 = gy mod p and therefore y = a by unicity
of y. It appears that the value of x can be recovered as a function of a:

Lemma 2. Let us define

Upper(ga) =
ga mod p2 − ga mod p

p

and

∆(ga) =
q

L(g)
·
Upper(ga)

ga
mod p .

Then

[[ga mod p]] = a−∆(ga) mod p .

Proof. Noting ga = A + p · Ā mod p2 for A, Ā ∈ Zp with A 6= 0, and using the
identity 1 + p · L(g) = g〈q, 0〉 mod p2, we have

ga = A

(

1 + p ·
Ā

A

)

= A (1 + p)
Ā
A = A · g〈

q
L(g)

Ā
A

, 0〉 mod p2 .

Taking the class of the left and right terms, we get a · [[g]] = [[A]] + ∆(ga) which
leads to the above using the trivial fact that [[g]] = 1. ut

Lemma 3. The mapping a→ [[ga mod p]] is random self-reducible.

Proof. Assume we want [[A]] for some given A = ga mod p. We make use of the
fact that for any r ∈ Zq, we have

[[Ar mod p]] = [[Ar mod p2]]−∆(Ar) = r · [[A]]−∆(Ar) mod p .

If r is drawn uniformly at random from Z
∗
q , Ar mod p is a random element of

Gp. Knowing [[Ar mod p]] and r, [[A]] is easily recovered as

[[A]] = r−1 ([[Ar mod p]] + ∆(Ar)) mod p .

ut
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4.2 The Class Diffie-Hellman Problems

We now turn to defining the computational problems over which we base the
encryption schemes suggested in the forthcoming sections.

Definition 5 (Computational Class Diffie-Hellman). Let Gp = 〈g mod
p〉 be defined as above. Given group elements ga mod p and gb mod p, compute
[[gab mod p]].

Definition 6 (Decision Class Diffie-Hellman). Distinguish the two distrib-
utions D = (ga mod p, gb mod p, [[gab mod p]]) and R = (ga mod p, gb mod p, z)
for a, b← Zq and z ← Zp.

We denote these problems CCDH and DCDH throughout the paper. As we
shall now see, CCDH is in fact closely related to CDH.

Theorem 1. CCDH and CDH are equivalent.

Proof. [CCDH ⇐ CDH]. Assume we are given a probabilistic algorithm A such
thatA(ga mod p, gb mod p) outputs gab mod p with probability ε and time bound
τ , the success probability being taken over the random variables of A and the
random selections a, b← Zq. Given A,B ← Gp, we run A(A,B) to get DH(A,B)
and deduce [[DH(A,B)]], thereby succeeding in solving CCDH with probability ε
and no more than τ + poly (log p) steps.

[CDH ⇐ CCDH]. Assume there exists a probabilistic algorithm A which solves
CCDH. By virtue of Lemma 3, we may assume that the input distribution of
A need not be uniform and that the success probability of A is overwhelming.
We build a reduction algorithm B that computes C = DH(A,B) for arbitrary
elements A,B ← Gp. B first runs A(A,B) to get [[C]]. B now sets A′ = Ag mod p
and runs A again to get [[C ′]] = A(A′, B) where C ′ = DH(A′, B) = BC mod p.
We must have

[[C ′]] = [[BC mod p]] = [[BC mod p2]]−∆(BC) = [[B]] + [[C]]−∆(BC)

wherefrom ∆(BC) = [[B]] + [[C]]− [[C ′]] mod p. Since

BC = C ′ + p · Upper(BC) = C ′

(

1 + p ·
L(g)

q
·∆(BC)

)

mod p2 ,

B now remains with the problem of finding a solution to the modular equation

C

C ′
= B−1

(

1 + p ·
L(g)

q
·
(

[[B]] + [[C]]− [[C ′]]
)

)

mod p2 (1)

where the unknowns are C,C ′ ∈ Zp. Setting the right-hand term to µ < p2,
B applies the extended Euclidean algorithm to µ and p2 in order to find small
solutions C,C ′ < p satisfying C/C ′ = µ mod p2. The validity of C is easily
checked by making sure that C ′C−1 mod p is equal to B. This stage finishes
with probability one in time bounded by log3 p resulting in that C = DH(A,B)
is found with no more than two calls to A and polynomial extra time. ut
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So far, the study of DCDH remains a challenging open question. In partic-
ular, the relations between DCDH and DDH are somewhat unclear. Although
we do not provide evidence of that fact, we suspect these two problems to be
extremely closely connected. We will make the assumption that DCDH is in-
tractable throughout the rest of this paper.

4.3 Encoding-Free Additive Encryption

As discussed above, our goal is to render ElGamal encryption truly practical by
getting rid of intricate group encoding mechanisms while maintaining a security
level in the standard model (in opposition to Hash-ElGamal encryption for in-
stance). The basic idea, instead of embedding the message into a group element,
consists in converting the session key output by the Diffie-Hellman exchange1

into an integer modulo p using the class function.

Set up: Let p an `p-bit prime and q an `q-bit prime divisor of p − 1. Let g be
a generator of the subgroup Gp of order q of Z

∗
p.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx mod p.

Encryption: To encrypt a message m ∈ Zp, one picks a random r ∈ Zq and
computes u = gr mod p and v = [[yr mod p]] + m mod p. The ciphertext is
c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one simply computes m =
v − [[ux mod p]] mod p.

4.4 Encoding-Free Multiplicative Encryption

Since the message and the class of gxy mod p are both integers modulo p, en-
cryption may also be performed using modular multiplication instead of modular
addition.

Set up: Let p an `p-bit prime and q an `q-bit prime divisor of p − 1. Let g be
a generator of the subgroup Gp of order q of Z

∗
p.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx mod p.

Encryption: To encrypt a message m ∈ Z
∗
p, one picks a random r ∈ Zq and

computes u = gr mod p and v = [[yr mod p]] · m mod p. The ciphertext is
c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one simply computes m =

v[[ux mod p]]
−1

mod p.

1 ElGamal encryption can indeed be viewed as a Diffie-Hellman key exchange where
the publication of the public-key y plays the role of the first pass.
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4.5 Properties of our encryption schemes

No conversion. Our encryption schemes do not require any conversion: the
message space is really the ring Zp (or the multiplicative subgroup Z

∗
p in the

multiplicative version.) Therefore, any string of bitlength lesser than k, where
p > 2k, can be encrypted directly. This is a strong property since we may have
q much smaller than p without impact on the encryption and decryption proce-
dures.

Efficiency. It is easily seen that ciphertexts have a similar size as with ElGa-
mal encryption. The bandwidth is exactly 1

2 (i.e., the encryption ratio is exactly
2), by opposition to ElGamal encryption for which the bandwidth is q

2p . We

recall that for p = 1024 and q = 160, the bandwidth of ElGamal is close to 1
13 ).

From the viewpoint of computational performances, it appears that in ad-
dition to the two exponentiations that are inherent to ElGamal encryption, we
require an additional exponentiation in Zp2 with a `q-bit exponent. This amounts
to four times the execution time of the same exponentiation in Zp. Totaling every-
thing, we need 6 exponentiations vs. 2 exponentiations in ElGamal. However, no
encoding is needed, which are basically done with exponentiations.

When decrypting an ElGamal encryption, an exponentiation of `q bits in Zp

is required, as well as a group decoding. In our schemes, however, we require an
exponentiation in Zp2 with an exponent of size `q and another exponentiation
with an exponent of size `q. Finally, we require 5 exponentiations to be compared
to the single exponentiation needed in ElGamal. Once again, no inverse of the
encoding is needed.

Multiplicative or Additive Homomorphism. Last but not least, our sche-
mes feature a partial homomorphic property over the ring of integers modulo
p. We mean for instance that one could add some constant to an encrypted
plaintext without needing the private key. Although these properties do forbid
resistance against chosen-ciphertext attacks, these are perceived as most desir-
able in many cryptographic applications such as electronic voting, and we expect
to see applications of our work in this regard. However, our schemes do not allow
to re-randomize a ciphertext per se.

5 Security Analysis

We now proceed to assessing the security of our schemes. Obviously, one cannot
prevent chosen-ciphertext attacks due to the partial malleability described above.
However, generic conversions do exist to convert CPA-secure schemes into CCA-
secure schemes (in the random oracle model)[9–11, 20, 17] when the context of
use demands CCA security.

One-Wayness. Focusing on the additive version of our encoding-free encryption
scheme, we state:
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Theorem 2. Let A be an adversary which can invert our cryptosystem with
success probability ε under a chosen-plaintext attack within time τ . Then the
Computational Class Diffie-Hellman problem can be solved with success proba-

bility ε within time similar to τ .

Proof. Given a Computational Class Diffie-Hellman instance (g, y = gx mod
p, w = gs mod p), our goal is to compute z = [[gxs mod p]]. To this aim, we use
the OW− CPA attacker A against our scheme, where g is the public generator,
and set the public key to y. We submit to A the ciphertext (u, v) = (w, a)
for a randomly chosen a ∈ Zp. This is a truly random ciphertext of a random
message, for which we have set r = s, and so A succeeds with probability ε to
find the corresponding plaintext m. If A succeeds, we thus learn [[gxs mod p]],
our expected result z = a−m mod p. ut

It is easily seen that the same theorem holds for the multiplicative encryption
scheme. One would simply note that the message space in this latter version is
Z
∗
p, and not Zp, as one needs to compute the inverse m−1 mod p to deduce z

from a and m.

Indistinguishability. About indistinguishability, we state a similar result:

Theorem 3. Let A be an adversary breaking the indistinguishability of our cryp-
tosystem with advantage ε under a chosen-plaintext attack within time τ . Then
the Decisional Class Diffie-Hellman problem can be solved with advantage ε/2
within time similar to τ .

Proof. Assume we are given an instance (g, y = gx mod p, w = gs mod p, z) of
the Decisional Class Diffie-Hellman problem in Zp, and want to decide whether
z is randomly selected in Zp or whether z = [[gxs mod p]].

As above, we make use an IND− CPA attacker A against our scheme, where
g is the public generator, and set the public key to y. We let the adversary
to choose two messages m0 and m1, pick a random bit b, and encrypt mb as
(u, v) = (w, z + mb mod p). Finally, we send this ciphertext to the A as the
challenge ciphertext.

Clearly, if z = [[gxs mod p]], c is a valid ciphertext of mb, where we set r = s,
and consequently the attacker A can guess the value b with advantage ε. On the
contrary, if z is a random element of Zp, z′ = z + mb mod p is also a random
element of Zp, thereby making the ciphertext independent from the message mb.
The advantage of A is then necessarily zero.

Hence, to solve our decisional problem, we reply True if the guess of A
is correct, otherwise a random bit is replied. Our reduction solves DCDH with
advantage at least ε/2. ut

6 Generalization to Zpk

As the scheme suggested by Damg̊ard-Jurik [6] is a generalization of Paillier
encryption, we may generalize our systems using Zpk for any integer k > 2.
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For any integer k > 2, we denote naturally Lk the function defined by X 7→
Xq−1 mod pk

p , and let the class of w as [[w]]k = Lk(w)Lk(g)
−1 mod pk−1. Then

the generalization of our technique to Zpk is as follows:

Set up: Let p an `p-bit prime and q an `q-bit prime divisor of (p− 1). Let g be
a generator of the subgroup Gp of order q of Zp.

Key generation: The private key is a random number x ∈ Zq. The correspond-
ing public key is y = gx mod p.

Encryption: To encrypt a message m ∈ Zpk−1 , one picks a random r ∈ Zq and
computes u = gr mod p and v = [[yr mod p]]k +m mod pk−1. The ciphertext
is c = (u, v).

Decryption: To decrypt a ciphertext c = (u, v), one simply computes

m = v − [[ux mod p]]k mod pk−1.

We may equally well use modular multiplication instead of addition of course.
In these cryptosystems, the encryption bandwidth is equal to k−1

k , and therefore
can be made nearly optimal. Furthermore, the property of partial malleability
is still a feature of the scheme. Regarding security, one refer the reader to [6]
for proofs that the generalizations of CCDH and DCDH are equivalent to their
version for k = 2. We then adapt the proof of the scheme in Zp2 to show that
the one-wayness and that indistinguishability of the generalized schemes are
identical to the extended versions of CCDH and DCDH.

7 Conclusion and Open Issues

In this paper, we have proposed new cryptosystems based on new computational
problems related to the Diffie-Hellman problems. Encryption does not require
messages to be converted into group elements by opposition to all known discrete-
log-based cryptosystem proven secure in the standard model.

Our cryptosystems feature a better encryption ratio (decreased by a factor
6.5 for common parameters), an identical ciphertext size, and remain comparable
in speed with ElGamal encryption. Their security in the standard model under
chosen-plaintext attacks is based on the CDH assumption for one-wayness, and
on the assumption that the Decision Class Diffie-Hellman for indistinguishability.

Our encryption schemes are partially homomorphic, either additively or mul-
tiplicatively. To the best of our knowledge, this gives the only example of an
additive encryption (even if partial) featuring standard-model security in the
discrete-log setting.

An open research area would be to find a discrete-log-based cryptosystem
that would provide a fully additive or multiplicative homomorphism. Another
independent but challenging topic would be to provide a more accurate study
on the connections between DCDH and DDH.



Encoding-Free ElGamal Encryption Without Random Oracles 13

Acknowledgements

The first author would like to thank Jean-François Dhem and Philippe Proust,
as well as his colleague Eric Brier for fruitful and enjoying discussions about the
difficulty of the DCDH problem.

This work was funded in part by the European project Ecrypt and in part
by the French RNRT project Crypto++.

References

1. M. Abdalla, M. Bellare, and P. Rogaway. DHAES: An Encryption Scheme Based
on the Diffie-Hellman Problem. Submission to IEEE P1363a. September 1998.
Available from http://grouper.ieee.org/groups/1363/.

2. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt
with RSA. In Eurocrypt ’94, LNCS 950, pages 92–111. Springer-Verlag, Berlin,
1995.

3. E. Bresson, D. Catalano, and D. Pointcheval. A Simple Public-Key Cryptosystem
with a Double Trapdoor Decryption Mechanism and its Applications. In Asiacrypt

’03, LNCS 2894, pages 37–54. Springer-Verlag, Berlin, 2003.
4. O. Chevassut, P.-A. Fouque, P. Gaudry, and D. Pointcheval. The Twist-Augmented
Technique for Key Exchange. In PKC ’06, LNCS. Springer-Verlag, Berlin, 2006.

5. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In Crypto ’98, LNCS 1462, pages
13–25. Springer-Verlag, Berlin, 1998.

6. I. Damg̊ard and M. Jurik. A Generalisation, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-Key System. In PKC ’01, LNCS 1992, pages
119–137. Springer-Verlag, Berlin, 2001.

7. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions

on Information Theory, IT–22(6):644–654, November 1976.
8. T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, IT–31(4):469–
472, July 1985.

9. E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-Key Encryp-
tion at Minimum Cost. In PKC ’99, LNCS 1560, pages 53–68. Springer-Verlag,
Berlin, 1999.

10. E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric
Encryption Schemes. In Crypto ’99, LNCS 1666, pages 537–554. Springer-Verlag,
Berlin, 1999.

11. E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-Key En-
cryption at Minimum Cost. IEICE Transaction of Fundamentals of Electronic

Communications and Computer Science, E83-A(1):24–32, January 2000.
12. R. Gennaro, H. Krawczyk, and T. Rabin. Secure Hashed Diffie-Hellman over

Non-DDH Groups. In Eurocrypt ’04, LNCS 3027, pages 361–381. Springer-Verlag,
Berlin, 2004.

13. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and

System Sciences, 28:270–299, 1984.
14. N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,

48(177):203–209, January 1987.
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