
A Provable-Security Treatment
of the Key-Wrap Problem

Phillip Rogaway1 and Thomas Shrimpton2

1 Dept. of Computer Science, University of California, Davis, California 95616, USA
2 Dept. of Computer Science, Portland State University, Portland, Oregon 97201, USA

Abstract. We give a provable-security treatment for the key-wrap problem, pro-
viding definitions, constructions, and proofs. We suggest that key-wrap’s goal
is security in the sense of deterministic authenticated-encryption (DAE), a no-
tion that we put forward. We also provide an alternative notion, a pseudorandom
injection (PRI), which we prove to be equivalent. We provide a DAE construc-
tion, SIV, analyze its concrete security, develop a blockcipher-based instantiation
of it, and suggest that the method makes a desirable alternative to the schemes
of the X9.102 draft standard. The construction incorporates a method to turn
a PRF that operates on a string into an equally efficient PRF that operates on
a vector of strings, a problem of independent interest. Finally, we consider IV-
based authenticated-encryption (AE) schemes that are maximally forgiving of
repeated IVs, a goal we formalize as misuse-resistant AE. We show that a DAE
scheme with a vector-valued header, such as SIV, directly realizes this goal.

1 Introduction

The American Standards Committee Working Group X9F1 has proposed four key-wrap
schemes in a draft standard known as ANS X9.102, and NIST has promulgated a request
for comments on the proposal [13]. The S/MIME working group of the IEEE had earlier
adopted a key-wrap scheme [17], and their discussions on this topic go back to at least
1997 [36]. NIST is considering specifying a key-wrap mechanism in their own series
of recommendations [M. Dworkin, personal communications]. But despite all this, the
key-wrap goal would seem to be essentially unknown to the cryptographic community.
No published paper analyzes any key-wrap scheme, and there is no formal definition
for key wrap in the literature, let alone any proven-secure scheme. Consequently, the
goal of this paper is to put the key-wrap problem on a proper, provable-security footing.
In the process, we will learn quite a bit that’s new about authenticated-encryption (AE).

Before proceeding it may be useful to give a very informal description of the key-
wrap goal, echoing the wording in [13, p. 1]. A key-wrap scheme is a kind of shared-key
encryption scheme. It aims to provide “privacy and integrity protection for specialized
data such as cryptographic keys, . . . without the use of nonces” (meaning counters or
random bits). So key-wrap’s raison d’être is to remove AE’s reliance on a nonce or
random bits. At least in the context of transporting cryptographic keys, a deterministic
scheme should be just as good as a probabilistic one, anyway. Another goal of key
wrap is to provide “integrity protection . . . for cleartext associated data, . . . which will
typically contain control information about the wrapped key” [13, p. 1].

CONTRIBUTIONS. We begin by offering a formal definition for what a key-wrap scheme
should do, defining a goal we call deterministic authenticated-encryption (DAE). A the-
sis underlying our work is that the goal of a key-wrap scheme is DAE. In a DAE scheme,
encryption deterministically turns a key, a header, and a message into a ciphertext. The
header (which may be absent, a string, or even a vector of strings) is authenticated but
not encrypted. To define security, the adversary is presented either a real encryption
oracle and a real decryption oracle (both are deterministic), or else a bogus encryption
oracle that just returns random bits and a bogus decryption oracle that always returns
an indication of invalidity. For a good DAE scheme, the adversary should be unable to
distinguish these possibilities. See Section 2.

Next we provide a DAE construction, SIV. (The acronym stands for Synthetic IV,
where IV stands for Initialization Vector.) The construction combines a conventional
IV-based encryption scheme (eg, CTR mode [27]) and a special kind of pseudorandom
function (PRF)—one that takes a vector of strings as input. We prove that SIV is a good
DAE, assuming its components are secure. See Section 3.

In practice one would want to realize SIV from a blockcipher, and so we show how
to turn a PRF f that operates on a single string into a PRF f∗ that takes a vector of
strings. Under our S2V construction, the cost of computing the PRF f∗ = S2V[f] on
a vector X = (X1, . . . , Xn) is at most the total cost to compute f on each compo-
nent Xi, and it can be considerably less, as the contribution from a component Xi can
be precomputed if it is to be held constant. See Section 4.

For a concrete alternative to the X9.102 schemes, we suggest to instantiate SIV
using modes CTR and CMAC∗ = S2V[CMAC], where CTR is counter mode [27]
and CMAC is an arbitrary-input-length variant of the CBC MAC [28]. The specified
mechanism removes unnecessary usage restrictions, improves efficiency, and provides
provable security. See Section 5.

Applications of DAEs go beyond the wrapping of keys. Many IV-based encryption
schemes, such as CBC, require an adversarially unpredictable IV. Experience has shown
that implementers and protocol designers often supply an incorrect IV, such as a con-
stant or counter. In a misuse-resistant AE scheme the aim is to do as well as possible
with whatever IV is provided. We formalize this goal and show that a DAE scheme that
takes a vector-valued header provides an immediate solution: just regard the IV as one
component of the header. Adopting this viewpoint, SIV can be regarded as an IV-based
AE scheme, one as efficient with respect to blockcipher calls as conventional two-pass
AE schemes like CCM [29] but more resilient to IV misuse. See Section 6.

Finally, we investigate the basic properties of DAEs. First, we give an alternative
characterization of DAEs. A pseudorandom injection (PRI) is like a blockcipher ex-
cept that the ciphertext may be longer than the plaintext (also, the message space may
be richer than {0, 1}n for some fixed n, and a header may be provided). We prove
PRIs equivalent to DAEs, up to a term that is negligible when the PRI is adequately
length-increasing. Next, we explain that the “all-in-one” definition we adopt for DAEs
is equivalent to a more conventional, two-requirement (privacy-plus-authenticity) def-
inition. Finally, we sketch a result validating the intuition that DAE-encrypting a mes-
sage that includes a random key provides semantic security. See Section 7.

WHY THIS GOAL? There are two main reasons to prefer DAE over conventional (prob-
abilistic or stateful) AE. First, DAE saves one from having to introduce random bits or
state in contexts where these measures are infeasible or unnecessary. Relatedly, DAE
saves on bandwidth, since no nonce or random value need be sent.

That said, in many contexts where one would think to use key wrap, one can use
a conventional AE scheme, instead. This does not make studying the key-wrap prob-
lem pointless. First, it clarifies the relationship between key wrap and conventional AE.
Second, DAE leads to misuse-resistant AE, and methods that achieve this aim make
practical alternatives to conventional (not misuse-resistant) two-pass AE methods. Fi-
nally, practitioners have already “voted” for key-wrap by way of protocol-design and
standardization efforts, and it is simply not productive to say “use a conventional AE
scheme” after this option has been rejected.

FURTHER RELATED WORK. AE goals were formalized over a series of papers [6, 8, 20,
31, 33]. The idea of binding the encryption process to unencrypted strings is folklore,
with recent work in this direction including [23, 31, 35]. Russell and Wong [34] intro-
duce a completely different approach for dealing with the encryption of low-entropy
messages, and Dodis and Smith [12] extend this entropy-based approach. Phan and
Pointcheval [30] study relationships among security notions for conventional (length-
preserving and headerless) ciphers. The SIV construction resembles the AE scheme
EAX [9]. A less ambitious relaxation on IV requirements than that formalized as misuse-
resistant encryption is given in [32]. A full version of this paper is available from the
authors’ web pages.

2 DAE Security

NOTATION. For a distribution S let S
$←S mean that S is selected randomly from S

(if S is a finite set the assumed distribution is uniform). All strings are binary strings.
When X and Y are strings we write X‖Y for their concatenation. When X ∈ {0, 1}∗
is a string |X| is its length and, if 1≤ i≤ j≤|X|, then X[i..j] is the substring running
from its ith to jth characters, or the empty string ε otherwise. By a vector we mean
a sequence of zero or more strings, and we write {0, 1}∗∗ for the space of all vectors.
We write a vector as X = (X1, . . . , Xn) where n = |X| is its number of compo-
nents. If X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are vectors then X,Y is the vector
(X1, . . . , Xn, Y1, . . . , Ym). In pseudocode, Boolean variables are silently initialized to
false, sets are initialized to the empty set, and partial functions are initialized to ev-
erywhere undefined (set to undef). An adversary is an algorithm with access to one
or more oracles, which we write as superscripts. By AO ⇒ 1 we mean the event that
adversary A, running with its oracle O, outputs 1. When an adversary has an oracle
with an expressed domain D we understand that the oracle returns the distinguished
value ⊥, read as invalid, if the adversary asks a query outside of D.

SYNTAX. A scheme for deterministic authenticated-encryption, or DAE, is a tuple
Π = (K, E ,D). The key space K is a set of strings or infinite strings endowed with a
distribution. For a practical scheme there must be a probabilistic algorithm that samples
from K, and we identify this algorithm with the distribution it induces. The encryption

algorithm E and decryption algorithm D are deterministic algorithms that take an input
inK×{0, 1}∗∗×{0, 1}∗ and return either a string or the distinguished value⊥. We write
EH

K (X) or EK(H,X) for E(K,H,X) and DH
K(Y) or DK(H,Y) for D(K,H, Y). We

assume there are sets H ⊆ {0, 1}∗∗, the header space, and X ⊆ {0, 1}∗, the message
space, such that EH

K (X) ∈ {0, 1}∗ iff H ∈ H and X ∈ X . We assume that X ∈ X ⇒
{0, 1}|X| ⊆ X . The ciphertext space is Y = {EH

K (X): K ∈ K, H ∈ H, X ∈ X}.
We require DH

K(Y) = X if EH
K (X) = Y , and DH

K(Y) = ⊥ if there is no such X .
It will be our convention that EH

K (⊥) = DH
K(⊥) = ⊥ for all K ∈ K and H ∈ H.

For any K ∈ K, H ∈ H, and X ∈ X , we assume that |EH
K (X)| = |X| + e(H,X)

for a function e: {0, 1}∗∗ × {0, 1}∗ → N where e(H,X) depends only on the number
of components of H , the length of each of these components, and the length of X .
The function e is called the expansion function of the DAE scheme. Often we are
concerned with the minimum expansion that might arise, and so define the number
s = minH∈H,X∈X {e(H,X)} as the stretch of the scheme.

Among what is formalized above: (1) encryption and decryption are given by algo-
rithms, not just functions; (2) trying to encrypt something outside of the header space
or message space returns ⊥; (3) trying to decrypt something that isn’t the encryption of
anything returns ⊥; (4) if you can encrypt a string of some length you can encrypt all
strings of that length; and (5) the length of a ciphertext exceeds the length of the plain-
text by an amount that depends on, at most, the length of the plaintext and the length of
the components of the header.

A DAE is length-preserving if e(H,X) = 0 for all H ∈ H, X ∈ X . An enciphering
scheme is a length-preserving DAE. A tweakable blockcipher is an enciphering scheme
where the plaintext space is X = {0, 1}n for some n ≥ 1. A blockcipher is a tweakable
blockcipher where the header space H = {ε} is a singleton set; as such, we omit
mention of it and write E: K × {0, 1}n → {0, 1}n.

SECURITY. We now give our formalization for DAE security.
Definition 1. Let Π = (K, E ,D) be a DAE scheme with header space H, message
space X , and expansion function e. The DAE-advantage of adversary A in breaking Π
is defined as

Advdae
Π (A) = Pr

[
K

$←K : AEK(·,·), DK(·,·) ⇒ 1
]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

]
.

On query H ∈ H, X ∈ X , the adversary’s random-bits oracle $(·, ·) returns a random
string of length |X|+ e(H,X). As always, oracle queries outside the specified domain
return ⊥. The ⊥(·, ·) oracle returns ⊥ on every input. We assume that the adversary
does not ask (H,Y) of its right (ie, second) oracle if some previous left (ie, first) oracle
query (H,X) returned Y ; does not ask (H,X) of its left oracle if some previous right-
oracle query (H,Y) returned X; does not ask left queries outside ofH×X ; and does not
repeat a query. The last two assumptions are without loss of generality, as an adversary
that violated any of these constraints could be replaced by a more efficient and equally
effective adversary (in the Advdae

Π -sense) that did not. The first two assumptions are to
prevent trivial wins.

DISCUSSION. The DAE-notion of security directly captures the amalgamation of pri-
vacy and authenticity. Assume that Advdae

Π (A) is insignificantly small for any reason-

able adversary. Then, for privacy, we know that any sequence of distinct EK-queries
results in a distribution on outputs resembling a distribution on outputs that depends
only on the length of each query (in fact, the outputs look like random strings of the
appropriate lengths). For authenticity we have that, despite the ability to perform a
chosen-plaintext attack (as provided by the EK oracle), we are unable to come up with
a new query Y for which DH

K(Y) �= ⊥.
It is possible to disentangle the privacy and authenticity notions in the DAE defini-

tion, defining separate notions for deterministic privacy and deterministic authenticity.
While the traditional approach for defining AE has been to split the goal into two sepa-
rate properties, the unified definition seems to us nicer and more succinct.

We point out that the DAE notion does not formalize the idea that the party that
produces a valid ciphertext (a value that decrypts to something other than⊥) necessarily
knows the underlying key K. One could formalize this, but it would not coincide with
DAE. Sometimes the key-wrap goal has been described in these terms. We suspect that
when security-designers speak of having to know the key in order to produce a valid
ciphertext what they typically mean is not a proof of knowledge, but just the inability
for a party to produce a valid ciphertext in the absence of the key. It is the latter notion
that is well captured by our DAE definition.

3 Building a DAE Scheme: The SIV Construction

CONVENTIONAL IV-BASED ENCRYPTION SCHEMES. Encryption modes like CBC
and CTR are what we call conventional IV-based encryption schemes. Such a scheme
Π = (K, E ,D) is syntactically similar to a DAE but in this context the header space H
is a set of strings and is renamed the IV space, IV . We expect only privacy in a conven-
tional IV-based encryption scheme, and demand a random IV. This makes the security
notion rather weak, but sufficient for our purposes. The following definition captures
the desired notion.

Fix a conventional IV-based encryption scheme Π = (K, E ,D) with IV-space
IV = {0, 1}n. For simplicity, assume Π is length-preserving. Let E$ be the proba-
bilistic algorithm defined from E that, on input K ∈ K and M ∈ {0, 1}∗, chooses
an IV

$←{0, 1}n, computes C ← E IV
K (M) and returns IV ‖ C. Then we define the

advantage of adversary A in violating the privacy of Π by

Advpriv$
Π (A) = Pr

[
K

$←K : AE$
K(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]

where the $(·) oracle, on input M , returns a random string of length n + |M |. We
assume that the adversary never asks a query M outside of the message space X of Π .

ARBITRARY-INPUT PSEUDORANDOM FUNCTIONS. Fix nonempty sets K and X , the
first being finite or otherwise endowed with a distribution and the second being finite or
countably infinite. A pseudorandom function (PRF) is a map F : K×X → {0, 1}n for
some n ≥ 1. We write FK(X) for F (K,X). Let Func(X ,Y) be the set of all functions
from X to Y and let Func(X , n) = Func(X , {0, 1}n). Regarding a function as the key,
we can consider Func(X , n) to be a PRF; to each X ∈ X associate a random string in

X

CIV

EK2

FK1

 IV’ if =

Hm X

CIV

DK2

H1 ...

...

FK1

HmH1 ...

...

Algorithm ẼK1,K2(H,X)
IV ← FK1(H,X)
C ← E IV

K2(X)
return Y ← IV ‖ C

Algorithm D̃K1,K2(H,Y)
if |Y | < n then return ⊥
IV ← Y [1 .. n], C ← Y [n + 1 .. |Y |]
X ← DIV

K2(C)
IV ′ ← FK1(H,X)
if IV = IV ′ then return X else return ⊥

Fig. 1. The SIV construction. The left side illustrates and defines encryption, the right side,
decryption. The header is H = (H1, . . . , Hm), the plaintext is X , the key is (K1, K2), and the
ciphertext is Y = IV ‖ C. Function F : K1 × {0, 1}∗∗ → {0, 1}n is a PRF and (K2, E ,D) is
an IV-based encryption scheme, such as CTR mode.

{0, 1}n. Let A be an adversary. The advantage of A in violating the pseudorandomness
of F is

Advprf
F (A) = Pr

[
K ← K : AFK(·) ⇒ 1

]
− Pr

[
ρ

$← Func(X , n) : Aρ(·) ⇒ 1
]

.

It is tacitly assumed that the adversary has a mechanism of naming points in X by
strings; if X ⊆ {0, 1}∗ then a string names itself, but if X is not a set of strings then
points of X are encoded as strings in some natural way. Our definition of PRFs is
unusual for allowing the input X to be arbitrary (possibly not a string).

THE SIV CONSTRUCTION. Let F : K1 × {0, 1}∗∗ → {0, 1}n be a PRF. Let Π =
(K2, E ,D) be a conventional IV-based encryption scheme with IV-length n and mes-
sage space X . We write FK(H,M) instead of FK((H,M)). We construct from (F,Π)
a DAE Π̃ = SIV[F,Π] = (K̃, Ẽ , D̃) with header space {0, 1}∗∗ and message space X
where K̃ = K1 × K2 and the encryption and decryption algorithms are as illustrated
and defined in Fig. 1. Recall that Y [n + 1..|Y |] = ε if |Y | < n.

We will now show that if F is PRF-secure and Π is IND$-secure then Π̃ =
SIV[F,Π] is DAE-secure. The intuition behind the proof is this. If any bit of the
header H or plaintext X is new then the string IV will look like a random string and so
IV ‖ C will be difficult to distinguish from random bits. On decryption, the adversary
must create a new (H,Y) where Y = IV ‖ C. Let’s imagine giving the adversary
the corresponding plaintext X for free. Now (H,X) is new because (H,X) determines

(H,Y) and the adversary is not allowed to decipher values that it trivially knows the
decipherment of. But if (H,X) is new then IV ′ is adversarially unpredictable and so
its chance of being equal to IV is only about 2−n.

In the following result we write TimeΠ(μ), where Π = (K, E ,D) is an IV-based
encryption scheme and μ > 0 is an integer, for the sum of the worst-case times: to select
K

$←K, to compute E IV
K on inputs of total length μ, and to compute DIV

K on inputs of
total length μ. Here, by convention, “time” means actual running time plus program
size, all relative to some fixed RAM model of computation.

Theorem 1. Let F : K1 × {0, 1}∗∗ → {0, 1}n be a PRF and let Π = (K2, E ,D) be a
conventional IV-based encryption scheme with message space X and IV-length n. Let
Π̃ = SIV[F,Π]. Let A be an adversary (for attacking Π̃) that runs in time t and asks q
queries, these of total length μ. Then there exists adversaries B and D such that

Advpriv$
Π (B) + Advprf

F (D) ≥ Advdae
Π̃

(A) − q/2n .

What is more, B and D run in time at most t′ = t + TimeΠ(μ) + cμ for some absolute
constant c and ask at most q queries, these of total length μ.

Proof. The proof proceeds in two stages. First we consider the DAE scheme G =
SIV[Func({0, 1}∗∗, n),Π] (replacing the function FK1 with a random function ρ ∈
Func({0, 1}∗∗, n)). Then we extend this to account for the insecurity of the PRF F .

Denote the forward and reverse algorithms associated to G as Gρ,K2 and G−1
ρ,K2,

with (ρ,K2) being the key. Let δ = Advdae
G (A) and q = qL + qR and μ = μL + μR

where qL and qR are the number of left and right oracle queries, these totaling μL and
μR bits, respectively. With the obvious simplifications in notation we have

δ = Pr
[
AGρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

]

=
(
Pr

[
AGρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
AGρ,K2(·,·), ⊥(·,·) ⇒ 1

])

+
(
Pr

[
AGρ,K2(·,·), ⊥(·,·) ⇒ 1

]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

])
= p1 + p2

where p1 and p2 represent the corresponding parenthesized expressions; it remains to
bound these quantities. For p2 we construct from A an adversary Bg for attacking the
priv$-security of Π . Let B run A. When A asks its left-oracle a query (H,X), let B
ask g(M) and return the result to A. When A asks a right-oracle query have B return ⊥.
When A halts with output bit b, let B output b. Notice that if g = E$

K then B properly
simulates Gρ,K2(·, ·),⊥(·, ·) oracles for A (here we need the assumption that A never
repeats a query). Similarly, if g = $ then B simulates $(·, ·),⊥(·, ·) oracles for A. Hence
p2 ≤ Advpriv$

Π (B).
To bound p1 consider giving the key K2 to the adversary and then asking it to carry

out its distinguishing task. As this can only make the task easier we may assume

p1 = Pr
[
AGρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
AGρ,K2(·,·), ⊥(·,·) ⇒ 1

]

≤ Pr
[
A(K2)Gρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
A(K2)Gρ,K2(·,·), ⊥(·,·) ⇒ 1

]
.

We can assume without loss of generality that A halts and outputs 1 as soon as a right-
oracle query returns something other than ⊥. Under this assumption, encryption queries
are useless for distinguishing between these two oracle pairs, as prior to the right oracle
returning M �= ⊥ both pairs behave as Gρ,K2(·, ·),⊥(·, ·). Hence p1 is bounded by the
probability that A asks a right-oracle query (H,Y) such that G−1

ρ,K2(H,Y) �= ⊥. Exam-

ining the algorithm for G−1
ρ,K2 we see that this occurs only when ρ(H,X) = IV , where

X = DIV
K2(C) (with Y having been parsed into IV and C). Since the adversary is given

the key K2, it can compute DIV
K2(C) for any strings IV, C of its choosing. In particular,

when it asks a right-oracle query (H,Y) it knows what is the input to the random func-
tion ρ and what is the target output IV . But under our assumption that A never queries
its right oracle (H,Y) when some left-oracle query (H,X) returned Y , either the input
(H,X) is new, or the target IV is new. Thus, the probability that ρ(H,X) = IV is at
most 1/2n for each right-oracle query, and we conclude that p1 ≤ qR/2n. Since qR ≤ q

we have δ ≤ Advpriv$
Π (B) + q/2n.

For the second part of the proof note that

Advdae
Π̃

(A) = δ + Pr
[
AẼK1,K2(·,·),D̃K1,K2(·,·) ⇒ 1

]
− Pr

[
AGρ,K2(·,·),G−1

ρ,K2 ⇒ 1
]

where Π̃ = (K1×K2, Ẽ , D̃) and we have suppressed the random selections K1 $←K1

and K2 $←K2. Let Dg be an adversary for attacking F as a PRF, and let it operate as
follows. Adversary D picks K2 $←K2 and runs A. When A asks a left oracle query
(H,X), B answers by setting IV ← g(H,X), computing C ← E IV

K2(X) and returning
to A the string IV ||C. On a right oracle query (H,Y), adversary D parses IV =
Y [1..n], C = Y [n + 1..|Y |], computes X ← DIV

K2(C) and tests if IV = g((H,X)),
returning X to A if so and ⊥ otherwise. When A halts with output bit b, let D output b.
Clearly D correctly simulates ẼK1,K2(·, ·), D̃K1,K2(·, ·) when its oracle g = FK1 for
some random key K1, and GK1,K2(·, ·), G−1

K1,K2(·, ·) if instead g = ρ for a random

ρ ∈ Func(M, n). So, Advdae
Ẽ (A) ≤ δ + Advprf

F (D) and rearranging gives the result.

4 Enriching a PRF to take Vectors of Strings as Input

THE GOAL. Traditionally, a pseudorandom function (PRF) takes a single string as input:
under the control of a key K, a PRF f maps a string X ∈ {0, 1}∗ into a string fK(X).
But SIV uses a non-traditional PRF—a function F that, under the control of a key K,
maps a vector of strings X = (X1, . . . , Xm) ∈ {0, 1}∗∗ into a string FK(X). Let us
call a PRF that takes a string as input an sPRF (string-input PRF) and a PRF that takes
a vector of strings as input a vPRF (vector-input PRF). This section is about efficient
ways to turn an sPRF f into a vPRF f∗.

At first glance it might seem like there’d be little to say about sPRF-to-vPRF conver-
sion: there’s an obvious approach for solving the problem, and it’s obviously correct.
Namely, encode any vector of strings X = (X1, . . . , Xm) into a single string 〈X〉
and apply the sPRF to that, f∗

K(X) = fK(〈X〉). By encode we mean any reversible,
easily-computed map of a vector of strings into a single one, say 〈X1, . . . , Xm〉 =
X1‖N1‖ · · · ‖Xm‖Nm where Ni = |Xi|64 is the length of Xi encoded into 64 bits

fK

Y1

fK

Y3

X1 X4X2 X3

fK

Y2

fK

Z

T

x 2

end

fK

Y1

fK

Y3

X4

fK

Y2

fK

Z

T

end

10*X1 X2 X3

x 2 x 2 x 2

x 2

fK (0)

x 2

fK (0)

x 2

Algorithm f∗
K(X1, . . . , Xm) The S2V Construction, f∗ = S2V[f]

10 if m = 0 then return fK(1)
11 S ← fK(0)
12 for i ← 1 to m − 1 do S ← 2S ⊕ fK(Xi)
13 if |Xm| < n then T ← S ⊕end Xm else T ← 2S ⊕end Xm10∗

14 return Z ← fK(T)

Fig. 2. The S2V construction makes a PRF f∗: K × {0, 1}∗∗ → {0, 1}n from a PRF f : K ×
{0, 1}∗ → {0, 1}n. Bottom: Definition of S2V. Strings X1, . . . , Xm ∈ {0, 1}∗ and m ≥ 0 are
arbitrary. Top: Illustration of it, computing Z = f∗

K(X1, X2, X3, X4). The left side shows the
case when |X4| is a nonzero multiple of n bits, the right otherwise.

(assume that |Xi| < 264 for all i). The problem with making a vPRF in such a way is
a diminution of efficiency. First, computing f∗

K(X) may take longer than the total time
to compute fK(Xi) for each component Xi since we have added 64m bits for length
annotation. Second, even if some components of X stay fixed (say X2 is constant), we
must still re-process the entire encoded string each time we compute f∗

K at a new value.
Third, the mechanism is not parallelizable; one cannot process Xi until one is done
processing Xi−1. Fourth, the assumption that |Xi| < 264, while reasonable in practice,
is artificial and potentially wasteful, yet use of a stingier encoding will lead to greater
complexity. Finally, the given encoding disrupts word alignment: if, for example, the
first argument is one byte and all subsequent arguments are multiples of eight bytes, an
implementation will now be dealing with non-word-aligned data. Fixing this problem
by a smarter encoding will lead to increased complexity. We aim to do sPRF-to-vPRF
conversion in a way that fixes the problems above.

NOTATION. Fix a value n ≥ 2. Let 0 = 0n and 1 = 0n−11 and 2 = 0n−210. These
are regarded as points in finite field F2n represented using a primitive polynomial in the
customary way. For S ∈ {0, 1}n let 2S mean the n-bit string representing the product
of 2 and S. This can be computed with a left shift of S followed by a conditional xor.
By 2iS we mean to do this multiplication by 2 a total of i times. By N ⊕end X (“xor-
into-the-end”) we mean to xor the n-bit string N into the end of the string X , which
will have at least n bits; N ⊕end X = (0x−nN)⊕X where x = |X|. By X10∗ we
mean X10i where i ≥ 0 is the least number such that |X| + 1 + i is divisible by n.

THE S2V CONSTRUCTION. Let f : K × {0, 1}∗ → {0, 1}n be an sPRF. We construct
from it the vPRF f∗ = S2V[f] where f∗: K × {0, 1}∗∗ → {0, 1}n is specified and
illustrated in Fig. 2. The special treatment of the last component of input, Xm, is to
handle the case where |Xm| < n. The construction has the desired efficiency charac-
teristics. The time to compute f∗

K(X) is essentially the sum of the times to compute
fK(Xi) on each component; in particular, when f = CMAC, say, the number of block-
cipher calls to compute f∗

K(X) is the sum of the number of blockcipher calls to compute
each fK(Xi). Also, one can preprocess invariant components so that the time to com-
pute f∗

K(X) will not significantly depend on them. The computation of f∗ is on-line
(assuming that f itself is on-line); in particular, the component lengths need not be
known in advance. Word alignment is not disrupted. And the scheme is parallelizable:
different arguments can be acted on simultaneously, so f∗ will be parallelizable if f is.

In a related effort we have proven the following result. The complexity-theoretic
analog of Theorem 2 follows in the usual way.

Theorem 2. Let f = Func({0, 1}∗, n) and f∗ = S2V[f]. Let A be an adversary that
asks at most q ≥ 3 vector-valued queries having p components in all, and each vector
having fewer than n components. Then Advprf

f∗ (A) ≤ pq/2n .

5 The SIV Mode of Operation

SIV MODE. Fix an n-bit blockcipher E and let Π = CTR be counter mode [27] over E,
with an incrementing function of S �→ 2S (that is, multiply by x in the finite field). Let
F = CMAC∗ = S2V[CMAC] be the result of applying the S2V construction to the
CMAC [28], again with an underlying blockcipher of E. (Recall that CMAC is a NIST-
recommended CBC MAC variant. It has a message space {0, 1}∗.) Consider the scheme
SIV[F,Π]. By combining Theorems 1 and 2 and known results about CMAC and CTR
mode [3, 18], the suggested mechanism is a provably secure DAE assuming E is a
secure PRP. The proven security falls off, as usual, in σ2/2n where σ is the total number
of blocks asked about. We overload the name SIV and call the mode of operation just
described SIV mode. We emphasize that the only thing left unspecified in the definition
of SIV mode is the underlying blockcipher, which would typically be AES.

COMMENTS. Comparing SIV-AES and the X9.102 scheme AESKW, say, we note that,
with SIV-AES, (1) the message space and header space are now {0, 1}∗ instead of
unusual sets; (2) message expansion is now independent of header length and mes-
sage length; (3) the number of blockcipher calls is reduced by a factor of at least six;
(4) vector-valued headers can now be handled, and the contribution of any component
can be pre-processed if it is to be held fixed; (5) one now has a provable-security guar-
antee, falling off in σ2/2n, where σ is the total number of message blocks acted on.
On the other hand, there is an effective attack on SIV if one can ask this many message
blocks, while we do not know if this is true for AESKW.

In the instantiation of SIV we could have used, in place of CMAC, the composition
of a universal hash function that gives n-bit outputs with an n-bit blockcipher. This
demonstrates that the DAE goal can be achieved by a single “cryptographic” pass over

the plaintext, plus a universal-hash-function computation over the header and plain-
text. Similarly, a parallelizable MAC like PMAC [10] could have been used in place of
CMAC, illustrating that DAE can be achieved by a parallelizable scheme.

6 Misuse-Resistant AE

This section gives an application of DAEs motivated not by the key-wrap problem but
by the goal of constructing symmetric encryption schemes that are resistant to misuse.
We are specifically concerned with IV-misuse, meaning that the IV is used in a way
other than the way mandated by the scheme; for example, using a counter when the
scheme requires a random value, or repeating an IV when the scheme requires it to
be a nonce. Experience has shown that IVs are frequently mishandled. An encryption
scheme robust against misuse should at least be an AE scheme (as programmers, pro-
tocol designers, and even books often assume that encryption provides for authenticity)
and so we will treat IV-misuse within the context of authenticated encryption and not
privacy-only encryption. The notion is applicable to the latter context, too.

Designing an IV-based AE scheme that is secure when its IV is an arbitrary nonce—
not just when it is a random value—is a first move in the direction of making schemes
robust against IV-misuse. The current section takes this a step further; we aim for an AE
scheme in which if the IV is a nonce then one achieves the usual notion for nonce-based
AE; and if the IV does get repeated then authenticity remains and privacy is compro-
mised only to the extent that some minimal amount of information may be revealed,
the information being if this plaintext is equal to a prior one, and even that is revealed
only if both the message and its header have been used with this particular IV. Our
formalization will capture this intent.

REVISED SYNTAX FOR AN IV-BASED ENCRYPTION SCHEME. Let us update the syn-
tax of a conventional IV-based encryption scheme to accommodate an associated header.
In this case an IV-based encryption scheme is a tuple Π = (K, E ,D) where every-
thing is as before except that the encryption algorithm and decryption algorithm take
an extra argument: now they are deterministic algorithms that map K × {0, 1}∗∗ ×
{0, 1}∗ × {0, 1}∗ to {0, 1}∗ ∪ {⊥}. We write EK(H, IV,X) or EH,IV

K (X) in place of
E(K,H, IV,X) and DK(H, IV, C) or DH,IV

K (Y) in place of D(K,H, IV, Y). There
must be sets H, IV , and X such that EH,IV

K (X) ∈ {0, 1}∗ iff H ∈ H and IV ∈ IV
and X ∈ X . We call IV the IV space of Π . We require that DH,IV

K (Y) = X if
EH,IV

K (X) = Y and DH,IV
K (Y) = ⊥ if there is no such X .

MISUSE-RESISTANT AE SECURITY. To measure the AE-security of an encryption
scheme Π = (K, E ,D) in the face of possible IV-reuse, imagine an adversary that
may ask any sequence of encryption queries, even those that repeat IVs, and any se-
quence of decryption queries, which may likewise repeat IVs. We want the encryption
oracle to return bits that look random except when this is impossible—on a repeated
triple of (header, IV, message)—and the decryption oracle should return ⊥ except when
the triple is already known to have a valid decryption. For simplicity, assume as before
that our IV-based encryption scheme is length-preserving.

Definition 2. Let Π = (K, E ,D) be an IV-based encryption scheme that can handle
an associated header and let A be an adversary. Then the MRAE-advantage of A in
attacking Π is

Advmrae
Π (A) = Pr

[
K

$←K : AEK(·,·,·), DK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·), ⊥(·,·,·) ⇒ 1

]
.

The adversary may not repeat a left-query and may not ask a right-query (H, IV, Y) if
some previous left-query (H, IV,X) returned Y .

Of course the EK oracle returns EK(H, IV,X) on input (H, IV,X) and DK returns
DK(H, IV, Y) on input (H, IV, Y). As before $(H, IV,X) returns a random string of
length n + |X| and ⊥(·, ·, ·) always returns ⊥.

The MRAE-notion of security trivially implies nonce-based AE-scheme security:
the latter is the special case where the adversary is not allowed to repeat an IV to any
left query. Note that all proposed AE schemes to date [19, 21, 26, 29, 33] do fail should
an IV get repeated: existing AE schemes are not MRAE-secure.

BUILDING A MISUSE-RESISTANT AE SCHEME. We can turn a DAE scheme Π =
(K, E ,D) with header space {0, 1}∗∗ and message space X into a misuse-resistant AE
scheme Π̃ = (K, Ẽ , D̃) by regarding the IV as one of the components, say the last
component, of the header. In particular, SIV mode can be regarded as an MRAE scheme
by asserting that one of the header components, say the last one specified, is an IV.

CORRECTNESS. Correctness of the MRAE scheme described above is nearly immedi-
ate. Given an adversary A for breaking the misuse-resistant AE scheme (it distinguishes
EK(·, ·, ·), DK(·, ·, ·) from $(·, ·, ·), ⊥(·, ·, ·)) we get a comparably good adversary B
for breaking the DAE, distinguishing EK(·, ·), DK(·, ·) from $(·, ·), ⊥(·, ·): adver-
sary B runs A and maps left queries (H, IV,X) to queries (〈H, IV 〉,X), and maps
right queries (H, IV, Y) to queries (〈H, IV 〉, Y). The syntax and DAE-security notion
for a PRI have been designed to “match up” so that there is nothing to do.

COMMENTS. Since all we have done in the construction is to hijack a component of the
header as an IV, it seems as though nothing has actually been done. Yet the MRAE goal
is conceptually different from the DAE goal, the former employing an IV and gaining
for this a stronger notion of security. The header and the IV are conceptually different,
the one being user-supplied data that the user wants authenticated, the other being a
mechanism-supplied value needed to obtain a strong notion of security.

In retrospect, it is easy to construct an MRAE scheme by a sequence of simple steps.
One can achieve this goal in a trivial way from a DAE scheme that takes a vector-valued
header. Such a DAE scheme is easily built from a vector-input PRF and an IND$-
secure conventional encryption scheme. At least if one is unconcerned with optimizing
efficiency, a vector-input PRF is easily made from a string-input PRF. String-input PRFs
and IND$-secure conventional encryption schemes can be built from blockciphers by
well-known means. So each step along our path is easy or well-known. Still, the direct
construction of an MRAE or DAE scheme from a blockcipher is not a simple matter, as
evidenced by the long history of buggy or baroque AE schemes Perhaps simple is how
things seem after finding the right abstraction boundaries.

7 Properties of DAEs

This section investigates the properties of the DAE notion, looking in three different
directions. First we explain the sense in which DAE achieve semantic security, indeed
AE, when plaintexts carry a key. Next we give an alternative definition for DAEs, called
pseudorandom injections, based on quite different intuition. Finally we show that the
“all-in-one” definition of DAE can equivalently be factored into separate privacy and
authenticity notions, as is traditionally done in this domain.

DAES ACHIEVE SEMANTIC SECURITY WHEN PLAINTEXTS CARRY A KEY. A folklore
justification for using a key-wrap scheme instead of a conventional AE scheme is that,
in the key-wrap setting, one expects the plaintext to carry a random cryptographic key,
and so a probabilistic or stateful mechanism should not be needed. We sketch a result
that validates this intuition.

A key-insertion scheme is a pair of algorithms Φ = (InsertKey, ExtractKey), the
first for inserting a κ-bit random value into a plaintext and the second for extracting it.
Algorithm InsertKey, on input of X ∈ {0, 1}∗, chooses a random R

$←{0, 1}κ and
returns M

$← InsertKey(X). An equivalent viewpoint is that InsertKey is determin-
istic and takes the random string R as input; then we write M ← InsertKey(X,R).
Algorithm ExtractKey takes M ∈ {0, 1}∗ and returns 〈X,R〉 with |R| = κ. Given a
DAE Π = (K, E ,D) define the probabilistic encryption scheme Π̃ = (K, Ẽ , D̃) by:

Algorithm ẼK(H,X)
R

$←{0, 1}κ

M ← InsertKey(X,R)
if M = ⊥ return ⊥
return EK(H,M)

Algorithm D̃K(H,Y)
M ← DK(H,Y)
if M = ⊥ then return ⊥
return ExtractKey(M)

The encryption scheme is nonstandard insofar as decryption of a ciphertext Y returns
not only the underlying plaintext X but also the random bits R that were inserted.
Correspondingly, we must adapt the definition of AE to get a variant of Advae

Π (A), call
it Advkiae

Π (A), where when the adversary asks for the encryption of X we choose the
random R and return it along with the ciphertext. This must look like random bits.

As long as the inserted key is sufficiently long, the algorithm described achieves the
security notion we have sketched. We omit further details.

DAES ARE EQUIVALENT TO PRIS. A secure pseudorandom injection (PRI) resembles
a random injective function with the desired amount of length-expansion. We allow a
chosen-ciphertext attack in our definition (that is, we focus on a “strong” PRI, analogous
to a strong PRP [24]), giving the adversary both the forward and backward direction of
the function. We allow the PRI to be tweakable [23], so that the scheme can be used
to authenticate an associated header. We allow the domain to be fairly arbitrary—in
particular, we consider message spaces that contain strings of various lengths.

Formally, let Π = (K, E ,D) be a DAE with header space H and message space X .
Imagine an adversary A given access to two oracles—one for E and one for D. We want
to say that this pair looks just like a random injection f and its inverse f−1, the random

injection f having the same signature as E . For e: H × X → N let InjHe (X ,Y) be the
set of all injective functions f from H×X to Y such that |f(H,X)| = |X|+ e(H,X).

Definition 3. Let Π = (K, E ,D) be a DAE with header space H, message space X ,
and expansion e. The PRI-advantage of adversary A in breaking Π is Advpri

Π (A) =

Pr
[
K

$←K : AEK(·,·), DK(·,·) ⇒ 1
]
− Pr

[
f

$← InjHe (X ,Y) : Af(·,·), f−1(·,·) ⇒ 1
]
.

The f−1 oracle above, on input (H,Y) returns the point X such that f(H,X) = Y ;
if there is no such point then it returns the distinguished value ⊥. As before, we may
assume without loss of generality that the adversary does not repeat a query, that it does
not ask (H,Y) of its right oracle if some previous left oracle query (H,X) returned Y ,
that it does not ask (H,X) of its left oracle if some previous right-oracle query (H,Y)
returned X , and that it does not ask any query (H,X) outside of H×X .

Assuming a reasonable amount of stretch, the PRI and DAE notions of security are
very close, as the following theorem shows.

Theorem 3. Let Π = (K, E ,D) be a DAE with header spaceH, message space X , and
stretch s, and let τ = minX∈X {|X|} be the length of a shortest plaintext. Let A be an
adversary that asks at most qL left-oracle queries, qR right-oracle queries, for a total of

q = qL + qR queries. Then
∣∣∣Advpri

Π (A) − Advdae
Π (A)

∣∣∣ ≤ q2/2s+τ+1 +4qR/2s.

In other words, as the stretch s grows, the DAE and PRI notions converge. The quan-
titative difference between the measures is small if the stretch is, say, s = 128 bits.
Among other reasons, it is to achieve this equivalence with PRIs that our definition for
them used indistinguishability from random bits rather than, say, indistinguishability
from the encryption of random bits.

Proof. Let A be an adversary that has access to two oracles. Let it ask qL queries of
its left oracle and qR queries of its right oracle, and let q = qL + qR. With the obvious
notational simplifications we have
∣∣∣Advpri

Π (A) − Advdae
Π (A)

∣∣∣ =
∣∣∣Pr

[
Af(·,·), f−1(·,·) ⇒ 1

]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

]∣∣∣
=

∣∣Pr
[
AG1 ⇒ 1] − Pr[AG0 ⇒ 1

]∣∣
for the games G0 and G1 defined in Fig. 3. Recall that booleans are initialized to false,
sets are initialized to empty, and partial functions are initialized to everywhere unde-
fined with the symbol undef. The set Image(f(H, ·)) contains all points Y �= undef
such that f(H,X) = Y for some X ∈ X . Set difference is indicated with a minus sign.
Look first at game G0. Much of the code (lines 12–13 and 20–26) is irrelevant to what
the adversary sees. Each query left(H,X) returns a random string of |X|+e(H,X) bits
and each query right(H,Y) returns ⊥. Thus game G0’s (left, right) oracles faithfully
simulate a pair of oracles ($,⊥) and we have that Pr[AG0 ⇒ 1] = Pr[A$,⊥ ⇒ 1].

Game G1 is more subtle. We claim that its (left, right) oracles are simply a lazy
evaluation of a pair of oracles (f, f−1) with the desired domain and range. To see
this, understand first that the partial function f(H, ·) maintains the correspondence
X �→ f(H,X) for those domain points that we have already assigned values to,

On query left(H, X):
10 c ← |X| + e(H, X)

11 Y
$←{0, 1}c

12 if Y ∈ Image(f(H, ·)) ∪ InvalidH then

13 bad ← true , Y
$←{0, 1}c − Image(f(H, ·)) − InvalidH

14 return f(H, X) ← Y

On query right(H, Y):

20 c ← |Y |
21 EligibleX ← {X ∈ {0, 1}≤c: |X| + e(H, X) = |Y | and f(H, X) = undef}
22 EligibleY ← {0, 1}c − Image(f(H, ·)) − InvalidH

23 x
$← [1 .. |EligibleY |]

24 if x ∈ [1..|EligibleX |] then

25 bad ← true , X ← the xth string of EligibleX , f(H, X) ← Y , return X

26 InvalidH ← InvalidH ∪ {Y }
27 return ⊥

Fig. 3. Games used in the proof of Theorem 3. Game G1 is the complete code; game G0 omits
the shaded statements.

while the set InvalidH maintains the set of points Y that have become ineligible to
be f(H,X) values, for any X , by virtue of having been asked right(H,Y) and having
returned ⊥, effectively asserting that f−1(H,Y) = ⊥ and so Y is outside the image
of f(H, ·). Now, starting at left(H,X) queries, we begin at line 10 by calculating the
length c of the ciphertext that we must return. The code at lines 11–14 returns a random
string Y of length c subject to the constraint that Y is outside of the image of f(H, ·)
and not ineligible to be an f(H,X) value by virtue of having asserted that there is no
preimage for Y with tweak H . Looking next at right(H,Y) queries, we calculate at
line 21 the set EligibleX of values X that could possibly map to Y using tweak H ,
and we calculate at line 22 the set of strings Y that could, at this moment be paired
with strings in EligibleX . By our conventions on the adversary making no “pointless”
queries, the string Y will necessarily be among the strings in EligibleY . Since we
aim to randomly and injectively pair points in EligibleX with points in EligibleY ,
the chance that a given point Y in EligibleY has a preimage in EligibleX is just
|EligibleX |/|EligibleY |. Lines 23 and 24 effectively flip a coin with this bias, decid-
ing if the string Y ∈ EligibleY should or should not be given a (random) preimage
in EligibleX . If it is not given a preimage, we record this decision by augmenting
InvalidH at line 26. If it is given a preimage, it is given a random one by lines 23–25,
the choice is recorded, and the random preimage is returned. We have thus provided a
perfect simulation of an (f, f−1) oracle, and so Pr[AG1 ⇒ 1] = Pr[Af,f−1 ⇒ 1].

To bound |Pr[AG1 ⇒ 1] − Pr[AG0 ⇒ 1]| we can now invoke the fundamental
lemma of game-playing [7], since games G1 and G0 have been defined to be iden-
tical apart from the sequel of statements bad ← true. The lemma assures us that
|Pr[AG1 ⇒ 1] − Pr[AG0 ⇒ 1]| ≤ Pr[AG0 sets bad].

Let BAD be the event that AG0 causes bad to get set to true. We must bound
the probability of BAD. Remember that the shaded statements have been expunged
from the game. Prior to BAD occurring, each left-query adds a single point to a set
Image(f(H, ·)) but has no impact on any set InvalidH , while each right-query adds
a single point to a set InvalidH but has no impact on any set Image(f(H, ·)). If
the ith query is left-query then the set Image(f(H, ·)) ∪ InvalidH will have at most
i − 1 points and the chance that bad will get set at line 13 will be at most (i −
1)/2s+τ and so, overall, the probability that bad gets set at line 13 is at most

∑q
i=1(i−

1)/2s+τ ≤ q2/2s+τ+1. If the ith query is a right-query then bad will be set with proba-
bility |EligibleX |/|EligibleY | for the current sets EligibleX and EligibleY . How big
can |EligibleX | be? Asked a query Y of length c, even if every string of length at most
c−s (the maximal possible length) is in EligibleX , still we will have that |EligibleX | <
2c+1−s. Conversely, how small can |EligibleY | be? On the ith query we know that
|EligibleY | > 2c − i. So on the ith query we have that |EligibleX |/|EligibleY | <
2c+1−s/(2c − i) ≤ 22−s assuming i ≤ 2c−1 or, more strongly, assuming q ≤ 2s+τ−1.
Summing over all qR right-queries we have that the probability that bad gets set at
line 25 is at most 4qR/2s. Since the result becomes vacuous when q > 2s+τ−1, we may
now drop that technical condition and conclude the theorem.

EQUIVALENCE OF ALL-IN-ONE AND TWO-REQUIREMENT DEFINITIONS. To define
DAE-security one could specify separate notions for deterministic privacy, detPriv,
and deterministic authenticity, detAuth, and demand both. This “dual-requirement”
approach is the one that has been taken in all prior work on AE. In our setting one could
let AdvdetPriv

Π (A) = Pr[AEK(·,·) ⇒ 1] − Pr[A$(·,·) ⇒ 1] and AdvdetAuth
Π (A) =

Pr[AEK(·,·), DK(·,·) forges] where in the first definition A does not repeat a query, and in
the second it never asks a right-query (H,Y) having already asked a left-query (H,X)
that returned Y . Saying that A forges means that it asks a right-query (H,Y) and gets
a response other than ⊥, and A did not earlier ask a left-query (H,X) that returned Y .

It is straightforward to prove that our all-in-one notion of DAE-security and the
two-requirement definition just sketched are equivalent. We omit further details.

The idea above can be extended to other variants of AE: the encryption scheme
may be probabilistic, nonce-based, or deterministic; the privacy requirement can be in-
distinguishability from random bits or conventional indistinguishability; and message
headers may be present or absent, strings or vectors. For any of these variants one can
give a two-requirement definition or an all-in-one definition. In all cases we have inves-
tigated, the results come out as above: the all-in-one definition and the two-requirement
definition are equivalent.

All-in-one definitions for AE resemble the definition for chosen-ciphertext-attack
(CCA2) security [3, 4]; the definition of AE strengthens CCA2 in a simple and natural
way. Perhaps it is only historical accident that our community has come to think of AE
as privacy+authenticity and not as “CCA3 security.”

Acknowledgments

Many thanks to the X9F1 working group, whose draft standard motivated this paper, and
Morris Dworkin, who made this work known to us [13]. Thanks to Jesse Walker for an

enormous number of valuable comments; to Susan Langford for noticing a significant
error in an earlier draft; to Steve Bellovin for voicing his concerns about IV-misuse at
a meeting back in 2000 (his comments ultimately motivated Section 6); Mihir Bellare
for his typically perceptive comments; and the Eurocrypt 2006 PC for their comments.
Phil Rogaway was supported by NSF 0208842 and a gift from Intel Corp. Much of this
paper was written while Rogaway was a visitor to the School of Information Technology
at Mae Fah Luang University, Thailand. Many thanks to MFLU and, in particular, to
Dr. Thongchai Yooyativong and Dr. Tatsanee Mallanoo, for their generous hospitality.

References

1. J. An and M. Bellare. Does encryption with redundancy provide authenticity? Advances in
Cryptology – Eurocrypt ’01, LNCS vol. 2045, Springer, pp. 512–528, 2001.

2. M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. On-Line ciphers and
the Hash-CBC constructions. Advances in Cryptology – Crypto ’01, LNCS vol. 2139,
Springer, pp. 292–309, 2001.

3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of sym-
metric encryption: analysis of the DES modes of operation. Proc. of the 38th Symposium
on Foundations of Computer Science, IEEE Press, pp. 394–403, 1997.

4. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security
for public-key encryption schemes. Advances in Cryptology – Crypto’98, LNCS vol.1462,
Springer, pp. 26–45, 1998.

5. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code. J. of Computer and System Science (JCSS), vol. 61, no. 3, pp. 362–
399, Dec 2000.

6. M. Bellare and C. Namprempre. Authenticated encryption: relations among notions and
analysis of the generic composition paradigm. Advances in Cryptology – Asiacrypt ’00,
LNCS vol. 1976, Springer, pp. 531–545, 2000.

7. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint report 2004/331, 2004.

8. M. Bellare and P. Rogaway. Encode-then-encipher encryption: how to exploit nonces or
redundancy in plaintexts for efficient encryption. Advances in Cryptology – Asiacrypt ’00,
LNCS vol. 1976, Springer, pp. 317–330, 2000.

9. M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. Fast Software En-
cryption (FSE 2004), LNCS vol. 3017, Springer, pp. 389–407, 2004.

10. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message au-
thentication. Advances in Cryptology – Eurocrypt ’02, LNCS vol. 2332, Springer, pp. 384-
397, 2001.

11. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: the three-key con-
structions. Advances in Cryptology – Crypto ’00, LNCS vol. 1880, Springer, pp. 197–215,
2000.

12. Y. Dodis and A. Smith. Entropic security and the encryption of high entropy messages.
Theory of Cryptography (TCC 2005), LNCS vol. 3378, Springer, pp. 556-577, 2005.

13. M. Dworkin. Request for review of key wrap algorithms. Cryptology ePrint report
2004/340, 2004. Contents are excerpts from a draft standard of the Accredited Standards
Committee, X9, entitled ANS X9.102 — Wrapping of Keys and Associated Data.

14. O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions. Journal
of the ACM, vol. 33, no. 4, pp. 210–217, 1986.

15. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., vol. 28, no. 2,
pp. 270–299, 1984.

16. S. Halevi and P. Rogaway. A tweakable enciphering mode. Advances in Cryptology –
Crypto ’03, LNCS vol. 2727, Springer, pp. 482–499, 2003.

17. R. Housley. Triple-DES and RC2 key wrapping. IETF RFC 3217, Dec. 2001. Earlier ver-
sion in RFC 2630, June 1999.

18. T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. Fast Software Encryption
(FSE 2003), LNCS vol. 2887, Springer, pp. 129–153, 2003.

19. C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptology –
Eurocrypt ’01, LNCS vol. 2045, Springer, pp. 529–544, 2001.

20. J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation.
Fast Software Encryption (FSE 2000), LNCS vol. 1978, Springer, pp. 284–299, 2000.

21. T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional authenti-
cated encryption mode. Fast Software Encryption (FSE 2004), LNCS vol. 3017, Springer,
pp. 427–445, 2004.

22. H. Krawczyk. The order of encryption and authentication for protecting communications
(or: how secure is SSL?) Advances in Cryptology – Crypto ’01, LNCS vol. 2139, Springer,
pp. 310–331, 2001.

23. M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. Advances in Cryptology –
Crypto ’02, LNCS vol. 2442, Springer, pp. 31–46, 2002.

24. M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudoran-
dom functions. SIAM J. Comput., vol. 17, no. 2, pp. 373–386, 1988.

25. S. Matyas. Key handling with control vectors. IBM Systems Journal, vol. 30, no. 2,
pp. 151–174, 1991.

26. D. McGrew and J. Viega. The Galois/Counter mode of operation (GCM). Manuscript,
May 2005. Available from the NIST website.

27. National Institute of Standards and Technology, M. Dworkin, author. Recommendation
for block cipher modes of operation, methods and techniques. NIST Special Publication
800-38A, 2001.

28. National Institute of Standards and Technology, M. Dworkin, author. Recommendation
for block cipher modes of operation: the CMAC mode for authentication. NIST Special
Publication 800-38B, May 2005.

29. National Institute of Standards and Technology, M. Dworkin, author. Recommendation
for block cipher modes of operation: the CCM mode for authentication and confidentiality.
NIST Special Publication 800-38C, May 2004.

30. D. Phan and D. Pointcheval. About the security of ciphers (semantic security and pseudo-
random permutations). Selected Areas in Cryptography (SAC 2004), LNCS vol 3357,
Springer, pp. 182-197, 2004.

31. P. Rogaway. Authenticated-encryption with associated-data. Proceedings of the 9th An-
nual Conference on Computer and Communications Security (CCS-9), ACM, pp. 98–107,
2002.

32. P. Rogaway. Nonce-based symmetric encryption. Fast Software Encryption (FSE 2004),
LNCS vol. 3017, Springer, pp. 348–359, 2004.

33. P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation for ef-
ficient authenticated encryption. ACM Transactions on Information and System Security
(TISSEC), vol. 6, no. 3, pp. 365–403, Aug. 2003.

34. A. Russell and H. Wong. How to fool an unbounded adversary with a short key. Advances
in Cryptology – Eurocrypt ’02, LNCS vol. 2332, Springer, pp. 133–148, 2002.

35. R. Schroeppel. The hasty pudding cipher. AES candidate submitted to NIST, 1998.
36. S/MIME Working Group, IETF. Mailing list archives, 1997. http://www.imc.org/ietf-

smime/index.html

